1,535 research outputs found
Evaluating the ecology of Spinosaurus: Shoreline generalist or aquatic pursuit specialist?
The giant theropod Spinosaurus was an unusual animal and highly derived in many ways, and interpretations of its ecology remain controversial. Recent papers have added considerable knowledge of the anatomy of the genus with the discovery of a new and much more complete specimen, but this has also brought new and dramatic interpretations of its ecology as a highly specialised semi-aquatic animal that actively pursued aquatic prey. Here we assess the arguments about the functional morphology of this animal and the available data on its ecology and possible habits in the light of these new finds. We conclude that based on the available data, the degree of adaptations for aquatic life are questionable, other interpretations for the tail fin and other features are supported (e.g., socio-sexual signalling), and the pursuit predation hypothesis for Spinosaurus as a âhighly specialized aquatic predatorâ is not supported. In contrast, a âwadingâ model for an animal that predominantly fished from shorelines or within shallow waters is not contradicted by any line of evidence and is well supported. Spinosaurus almost certainly fed primarily from the water and may have swum, but there is no evidence that it was a specialised aquatic pursuit predator
Structured matrices, continued fractions, and root localization of polynomials
We give a detailed account of various connections between several classes of
objects: Hankel, Hurwitz, Toeplitz, Vandermonde and other structured matrices,
Stietjes and Jacobi-type continued fractions, Cauchy indices, moment problems,
total positivity, and root localization of univariate polynomials. Along with a
survey of many classical facts, we provide a number of new results.Comment: 79 pages; new material added to the Introductio
Local asymptotic normality for qubit states
We consider n identically prepared qubits and study the asymptotic properties
of the joint state \rho^{\otimes n}. We show that for all individual states
\rho situated in a local neighborhood of size 1/\sqrt{n} of a fixed state
\rho^0, the joint state converges to a displaced thermal equilibrium state of a
quantum harmonic oscillator. The precise meaning of the convergence is that
there exist physical transformations T_{n} (trace preserving quantum channels)
which map the qubits states asymptotically close to their corresponding
oscillator state, uniformly over all states in the local neighborhood.
A few consequences of the main result are derived. We show that the optimal
joint measurement in the Bayesian set-up is also optimal within the pointwise
approach. Moreover, this measurement converges to the heterodyne measurement
which is the optimal joint measurement of position and momentum for the quantum
oscillator. A problem of local state discrimination is solved using local
asymptotic normality.Comment: 16 pages, 3 figures, published versio
Electron Accumulation and Emergent Magnetism in LaMnO3/SrTiO3 Heterostructures
Emergent phenomena at polar-nonpolar oxide interfaces have been studied
intensely in pursuit of next-generation oxide electronics and spintronics. Here
we report the disentanglement of critical thicknesses for electron
reconstruction and the emergence of ferromagnetism in polar-mismatched
LaMnO3/SrTiO3 (001) heterostructures. Using a combination of element-specific
X-ray absorption spectroscopy and dichroism, and first-principles calculations,
interfacial electron accumulation and ferromagnetism have been observed within
the polar, antiferromagnetic insulator LaMnO3. Our results show that the
critical thickness for the onset of electron accumulation is as thin as 2 unit
cells (UC), significantly thinner than the observed critical thickness for
ferromagnetism of 5 UC. The absence of ferromagnetism below 5 UC is likely
induced by electron over-accumulation. In turn, by controlling the doping of
the LaMnO3, we are able to neutralize the excessive electrons from the polar
mismatch in ultrathin LaMnO3 films and thus enable ferromagnetism in films as
thin as 3 UC, extending the limits of our ability to synthesize and tailor
emergent phenomena at interfaces and demonstrating manipulation of the
electronic and magnetic structures of materials at the shortest length scales.Comment: Accepted by Phys. Rev. Let
Effective Interactions and Volume Energies in Charged Colloids: Linear Response Theory
Interparticle interactions in charge-stabilized colloidal suspensions, of
arbitrary salt concentration, are described at the level of effective
interactions in an equivalent one-component system. Integrating out from the
partition function the degrees of freedom of all microions, and assuming linear
response to the macroion charges, general expressions are obtained for both an
effective electrostatic pair interaction and an associated microion volume
energy. For macroions with hard-sphere cores, the effective interaction is of
the DLVO screened-Coulomb form, but with a modified screening constant that
incorporates excluded volume effects. The volume energy -- a natural
consequence of the one-component reduction -- contributes to the total free
energy and can significantly influence thermodynamic properties in the limit of
low-salt concentration. As illustrations, the osmotic pressure and bulk modulus
are computed and compared with recent experimental measurements for deionized
suspensions. For macroions of sufficient charge and concentration, it is shown
that the counterions can act to soften or destabilize colloidal crystals.Comment: 14 pages, including 3 figure
Tensor completion in hierarchical tensor representations
Compressed sensing extends from the recovery of sparse vectors from
undersampled measurements via efficient algorithms to the recovery of matrices
of low rank from incomplete information. Here we consider a further extension
to the reconstruction of tensors of low multi-linear rank in recently
introduced hierarchical tensor formats from a small number of measurements.
Hierarchical tensors are a flexible generalization of the well-known Tucker
representation, which have the advantage that the number of degrees of freedom
of a low rank tensor does not scale exponentially with the order of the tensor.
While corresponding tensor decompositions can be computed efficiently via
successive applications of (matrix) singular value decompositions, some
important properties of the singular value decomposition do not extend from the
matrix to the tensor case. This results in major computational and theoretical
difficulties in designing and analyzing algorithms for low rank tensor
recovery. For instance, a canonical analogue of the tensor nuclear norm is
NP-hard to compute in general, which is in stark contrast to the matrix case.
In this book chapter we consider versions of iterative hard thresholding
schemes adapted to hierarchical tensor formats. A variant builds on methods
from Riemannian optimization and uses a retraction mapping from the tangent
space of the manifold of low rank tensors back to this manifold. We provide
first partial convergence results based on a tensor version of the restricted
isometry property (TRIP) of the measurement map. Moreover, an estimate of the
number of measurements is provided that ensures the TRIP of a given tensor rank
with high probability for Gaussian measurement maps.Comment: revised version, to be published in Compressed Sensing and Its
Applications (edited by H. Boche, R. Calderbank, G. Kutyniok, J. Vybiral
Recommended from our members
IFR Fuel Cycle Demonstration in the EBR-II Fuel Cycle Facility
The next major milestone of the IFR program is engineering-scale demonstration of the pyroprocess fuel cycle. The EBR-II Fuel Cycle Facility has just entered a startup phase which includes completion of facility modifications, and installation and cold checkout of process equipment. This paper reviews the design and construction of the facility, the design and fabrication of the process equipment, and the schedule and initial plan for its operation. 5 refs., 4 figs
The relationship between the perception of distributed leadership in secondary schools and teachers' and teacher leaders' job satisfaction and organizational commitment
This study investigates the relation between distributed leadership, the cohesion of the leadership team, participative decision-making, context variables, and the organizational commitment and job satisfaction of teachers and teacher leaders. A questionnaire was administered to teachers and teacher leaders (n=1770) from 46 large secondary schools. Multiple regression analyses and path analyses revealed that the study variables explained significant variance in organizational commitment. The degree of explained variance for job satisfaction was considerably lower compared to organizational commitment. Most striking was that the cohesion of the leadership team and the amount of leadership support was strongly related to organizational commitment, and indirectly to job satisfaction. Decentralization of leadership functions was weakly related to organizational commitment and job satisfaction
Recommended from our members
Molecular beam epitaxy of highly crystalline GeSnC using CBr4 at low temperatures
Tensile-strained pseudomorphic Ge1âxâySnxCy was grown on GaAs substrates by molecular beam epitaxy using carbon tetrabromide (CBr4) at low temperatures (171â258â°C). High resolution x-ray diffraction reveals good crystallinity in all samples. Atomic force microscopy showed atomically smooth surfaces with a maximum roughness of 1.9ânm. The presence of the 530.5âcmâ1 local vibrational mode of carbon in the Raman spectrum verifies substitutional C incorporation in Ge1âxâySnxCy samples. X-ray photoelectron spectroscopy confirms carbon bonding with Sn and Ge without evidence of sp2 or sp3 carbon formation. The commonly observed Raman features corresponding to alternative carbon phases were not detected. Furthermore, no Sn droplets were visible in scanning electron microscopy, illustrating the synergy in C and Sn incorporation and the potential of Ge1âxâySnxCy active regions for silicon-based lasers.The authors acknowledge support from the National Science
Foundation under Grant Nos. DMR-1508646, CBET-1438608, and
PREM DMR-2122041, the Center for Dynamics and Control of
Materials is supported by the National Science Foundation under
Award No. DMR-1720595, and additional support by the
University of Texas at Austin.Center for Dynamics and Control of Material
Ergosterol Effect on the Desaturation of 14C-Cis-Vaccenate in Tetrahymena
Supplement of ergosterol to the growth medium of the ciliated protozoan Tetrahymena pyriformis W leads to incorporation of the foreign sterol within cell membranes and suppression of synthesis of the native sterol-like compound tetrahymanol, as well as to changes in the fatty acid compositions of several major classes of membrane lipid. Alteration of fatty acid composition is thought to represent a regulatory mechanism whereby optimum membrane fluidity is maintained when the slightly dissimilar foreign sterol is added into the phospholipid bilayer of the membranes.
The present study, using several different conditions of growth temperature, substrate concentrations and incubation time, and ergosterol concentrations and exposure time, is an attempt to provide evidence supporting a hypothetical regulatory mechanism. This mechanism proposes that there is a feedback regulation by membrane-bound sterol on an enzyme or enzymes involved in synthesis of the long chain fatty acids contained in membrane phospholipid. Such a mechanism could account for the balance between sterol and fatty acid content of membrane. The data presented here show that a statistically significant increase in desaturation of 14C-cis-vaccenate can be demonstrated in Tetrahymena cell cultures whose membranes contain the foreign sterol, when growth temperature is maintained at 20° or 29.5°.
Tetrahymena desaturated 14C-cis-vaccenate substrate in both ergosterol supplemented and normal cultures. The 14C labeled product, 6,11-18:2 was recovered and separated by silver nitrate-Unisil column chromatography
- âŠ