2,502 research outputs found
Probing dark energy with future surveys
I review the observational prospects to constrain the equation of state parameter of dark energy and I discuss the potential of future imaging and redshift surveys. Bayesian model selection is used to address the question of the level of accuracy on the equation of state parameter that is required before explanations alternative to a cosmological constant become very implausible. I discuss results in the prediction space of dark energy models. If no significant departure from w=-1 is detected, a precision on w of order 1% will translate into strong evidence against fluid-like dark energy, while decisive evidence will require a precision of order 10^-3
Testing the paradigm of adiabaticity
We introduce the concepts of adiabatic (curvature) and isocurvature (entropy)
cosmological perturbations and present their relevance for parameter estimation
from cosmic microwave background anisotropies data. We emphasize that, while
present-day data are in excellent agreement with pure adiabaticity, subdominant
isocurvature contributions cannot be ruled out. We discuss model independent
constraints on the isocurvature contribution. Finally, we argue that the Planck
satellite will be able to do precision cosmology even if the assumption of
adiabaticity is relaxed.Comment: Proceedings of the 10th Marcel Grossmann Meeting, Rio de Janeiro,
July 2003, 5 pages, 2 figure
Applications of Bayesian model selection to cosmological parameters
Bayesian model selection is a tool to decide whether the introduction of a
new parameter is warranted by data. I argue that the usual sampling statistic
significance tests for a null hypothesis can be misleading, since they do not
take into account the information gained through the data, when updating the
prior distribution to the posterior. On the contrary, Bayesian model selection
offers a quantitative implementation of Occam's razor.
I introduce the Savage-Dickey density ratio, a computationally quick method
to determine the Bayes factor of two nested models and hence perform model
selection. As an illustration, I consider three key parameters for our
understanding of the cosmological concordance model. By using WMAP 3-year data
complemented by other cosmological measurements, I show that a non-scale
invariant spectral index of perturbations is favoured for any sensible choice
of prior. It is also found that a flat Universe is favoured with odds of 29:1
over non--flat models, and that there is strong evidence against a CDM
isocurvature component to the initial conditions which is totally
(anti)correlated with the adiabatic mode (odds of about 2000:1), but that this
is strongly dependent on the prior adopted.
These results are contrasted with the analysis of WMAP 1-year data, which
were not informative enough to allow a conclusion as to the status of the
spectral index. In a companion paper, a new technique to forecast the Bayes
factor of a future observation is presented.Comment: v2 to v3: minor changes, matches accepted version by MNRAS. v1 to v2:
major revision. New results using WMAP 3-yr data, scale-invariant spectrum
now disfavoured with moderate evidence. New benchmark test for the accuracy
of the method. Bayes factor forecast methodology (PPOD, formerly called ExPO)
expanded and now presented in a companion paper (astro-ph/0703063
Statistical Challenges of Global SUSY Fits
We present recent results aiming at assessing the coverage properties of Bayesian and frequentist inference methods, as applied to the reconstruction of supersymmetric parameters from simulated LHC data. We discuss the statistical challenges of the reconstruction procedure, and highlight the algorithmic difficulties of obtaining accurate profile likelihood estimates
Constraining the helium abundance with CMB data
We consider for the first time the ability of present-day cosmic microwave background (CMB) anisotropies data to determine the primordial helium mass fraction, Y_p. We find that CMB data alone gives the confidence interval 0.160 < Y_p < 0.501 (at 68% c.l.). We analyse the impact on the baryon abundance as measured by CMB and discuss the implications for big bang nucleosynthesis. We identify and discuss correlations between the helium mass fraction and both the redshift of reionization and the spectral index. We forecast the precision of future CMB observations, and find that Planck alone will measure Y_p with error-bars of 5%. We point out that the uncertainty in the determination of the helium fraction will have to be taken into account in order to correctly estimate the baryon density from Planck-quality CMB data
Reproducing Cosmic Microwave Background anisotropies with mixed isocurvature perturbations
Recently high quality data of the cosmic microwave background anisotropies
have been published. In this work we study to which extent the cosmological
parameters determined by using this data depend on assumptions about the
initial conditions. We show that for generic initial conditions, not only the
best fit values are very different but, and this is our main result, the
allowed parameter range enlarges dramatically.Comment: 4 pages, 5 figures, submitted to PRL; Major changes following
referees suggestions; the allowed cosmological parameter range enlarges
dramaticall
The isocurvature fraction after WMAP 3-year data
I revisit the question of the adiabaticity of initial conditions for
cosmological perturbations in view of the 3-year WMAP data. I focus on the
simplest alternative to pure adiabatic conditions, namely a superposition of
the adiabatic mode and one of the 3 possible isocurvature modes, with the same
spectral index as the adiabatic component.
I discuss findings in terms of posterior bounds on the isocurvature fraction
and Bayesian model selection. The Bayes factor (models likelihood ratio) and
the effective Bayesian complexity are computed for several prior ranges for the
isocurvature content. I find that the CDM isocurvature fraction is now
constrained to be less than about 10%, while the fraction in either the
neutrino entropy or velocity mode is below about 20%. Model comparison strongly
disfavours mixed models that allow for isocurvature fractions larger than
unity, while current data do not allow to distinguish between a purely
adiabatic model and models with a moderate (ie, below about 10%) isocurvature
contribution.
The conclusion is that purely adiabatic conditions are strongly favoured from
a model selection perspective. This is expected to apply in even stronger terms
to more complicated superpositions of isocurvature contributions.Comment: Expanded discussion of degeneracies, updated references, no change to
conclusions. Matches published versio
Efficient reconstruction of CMSSM parameters from LHC data - A case study
We present an efficient method of reconstructing the parameters of the
Constrained MSSM from assumed future LHC data, applied both on their own right
and in combination with the cosmological determination of the relic dark matter
abundance. Focusing on the ATLAS SU3 benchmark point, we demonstrate that our
simple Gaussian approximation can recover the values of its parameters
remarkably well. We examine two popular non-informative priors and obtain very
similar results, although when we use an informative, naturalness-motivated
prior, we find some sizeable differences. We show that a further strong
improvement in reconstructing the SU3 parameters can by achieved by applying
additional information about the relic abundance at the level of WMAP accuracy,
although the expected data from Planck will have only a very limited additional
impact. Further external data may be required to break some remaining
degeneracies. We argue that the method presented here is applicable to a wide
class of low-energy effective supersymmetric models, as it does not require to
deal with purely experimental issues, eg, detector performance, and has the
additional advantages of computational efficiency. Furthermore, our approach
allows one to distinguish the effect of the model's internal structure and of
the external data on the final parameters constraints.Comment: 23 pages, 10 figures - moderate revision: includes naturalness prior.
Matches published versio
Constraints on a mixed inflaton and curvaton scenario for the generation of the curvature perturbation
We consider a supersymmetric grand unified model which naturally solves the
strong CP and mu problems via a Peccei-Quinn symmetry and leads to the standard
realization of hybrid inflation. We show that the Peccei-Quinn field of this
model can act as curvaton. In contrast to the standard curvaton hypothesis,
both the inflaton and the curvaton contribute to the total curvature
perturbation. The model predicts an isocurvature perturbation too which has
mixed correlation with the adiabatic one. The cold dark matter of the universe
is mostly constituted by axions plus a small amount of lightest sparticles. The
predictions of the model are confronted with the Wilkinson microwave anisotropy
probe and other cosmic microwave background radiation data. We analyze two
representative choices of parameters and derive bounds on the curvaton
contribution to the adiabatic perturbation. We find that, for the choice which
provides the best fitting of the data, the curvaton contribution to the
adiabatic amplitude must be smaller than about 67% (at 95% confidence level).
The best-fit power spectra are dominated by the adiabatic part of the inflaton
contribution. We use Bayesian model comparison to show that this choice of
parameters is disfavored with respect to the pure inflaton scale-invariant case
with odds of 50 to 1. For the second choice of parameters, the adiabatic mode
is dominated by the curvaton, but this choice is strongly disfavored relative
to the pure inflaton scale-invariant case (with odds of 10^7 to 1). We conclude
that in the present framework the perturbations must be dominated by the
adiabatic component from the inflaton.Comment: 27 pages including 16 figures, uses Revte
Introducing doubt in Bayesian model comparison
There are things we know, things we know we dont know, and then there are things we dont know we dont know. In this paper we address the latter two issues in a Bayesian framework, introducing the notion of doubt to quantify the degree of (dis)belief in a model given observational data in the absence of explicit alternative models. We demonstrate how a properly calibrated doubt can lead to model discovery when the true model is unknown
- …