387 research outputs found
A massive, quiescent galaxy at redshift of z=3.717
In the early Universe finding massive galaxies that have stopped forming
stars present an observational challenge as their rest-frame ultraviolet
emission is negligible and they can only be reliably identified by extremely
deep near-infrared surveys. These have revealed the presence of massive,
quiescent early-type galaxies appearing in the universe as early as z2,
an epoch 3 Gyr after the Big Bang. Their age and formation processes have now
been explained by an improved generation of galaxy formation models where they
form rapidly at z3-4, consistent with the typical masses and ages derived
from their observations. Deeper surveys have now reported evidence for
populations of massive, quiescent galaxies at even higher redshifts and earlier
times, however the evidence for their existence, and redshift, has relied
entirely on coarsely sampled photometry. These early massive, quiescent
galaxies are not predicted by the latest generation of theoretical models.
Here, we report the spectroscopic confirmation of one of these galaxies at
redshift z=3.717 with a stellar mass of 1.710 M whose
absorption line spectrum shows no current star-formation and which has a
derived age of nearly half the age of the Universe at this redshift. The
observations demonstrates that the galaxy must have quickly formed the majority
of its stars within the first billion years of cosmic history in an extreme and
short starburst. This ancestral event is similar to those starting to be found
by sub-mm wavelength surveys pointing to a possible connection between these
two populations. Early formation of such massive systems is likely to require
significant revisions to our picture of early galaxy assembly.Comment: 6 pages, 7 figures. This is the final preprint corresponding closely
to the published version. Uploaded 6 months after publication in accordance
with Nature polic
ZFIRE: The Evolution of the Stellar Mass Tully-Fisher Relation to Redshift 2.0 < Z < 2.5 with MOSFIRE
Using observations made with MOSFIRE on Keck I as part of the ZFIRE survey,
we present the stellar mass Tully-Fisher relation at 2.0 < z < 2.5. The sample
was drawn from a stellar mass limited, Ks-band selected catalog from ZFOURGE
over the CANDELS area in the COSMOS field. We model the shear of the Halpha
emission line to derive rotational velocities at 2.2X the scale radius of an
exponential disk (V2.2). We correct for the blurring effect of a
two-dimensional PSF and the fact that the MOSFIRE PSF is better approximated by
a Moffat than a Gaussian, which is more typically assumed for natural seeing.
We find for the Tully-Fisher relation at 2.0 < z < 2.5 that logV2.2 =(2.18 +/-
0.051)+(0.193 +/- 0.108)(logM/Msun - 10) and infer an evolution of the
zeropoint of Delta M/Msun = -0.25 +/- 0.16 dex or Delta M/Msun = -0.39 +/- 0.21
dex compared to z = 0 when adopting a fixed slope of 0.29 or 1/4.5,
respectively. We also derive the alternative kinematic estimator S0.5, with a
best-fit relation logS0.5 =(2.06 +/- 0.032)+(0.211 +/- 0.086)(logM/Msun - 10),
and infer an evolution of Delta M/Msun= -0.45 +/- 0.13 dex compared to z < 1.2
if we adopt a fixed slope. We investigate and review various systematics,
ranging from PSF effects, projection effects, systematics related to stellar
mass derivation, selection biases and slope. We find that discrepancies between
the various literature values are reduced when taking these into account. Our
observations correspond well with the gradual evolution predicted by
semi-analytic models.Comment: 21 pages, 14 figures, 1 appendix. Accepted for publication by Apj,
February 28, 201
Parkinson's disease-associated mutations in DJ-1 modulate its dimerization in living cells
Mutations in the protein DJ-1 cause recessive forms of early onset familial Parkinson's disease (PD). To date, most of the causative mutations studied destabilize formation of DJ-1 homodimers, which appears to be closely linked to its normal function in oxidative stress and other cellular processes. Despite the importance of understanding the dimerization dynamics of this protein, this aspect of DJ-1 biology has not previously been directly studied in living cells. Here, we use bimolecular fluorescence complementation to study DJ-1 dimerization and find not only that DJ-1 forms homodimers in living cells but that most PD causative DJ-1 mutations disrupt this process, including the L166P, M26I, L10P, and P158∆ mutations. Interestingly, the E64D mutant form of DJ-1 retains the ability to form homodimers. However, while wild-type DJ-1 dimers are stabilized under oxidative stress conditions, we find that the E64D mutation blocks this stabilization. Furthermore, our data show that the E64D mutation potentiates the formation of aggresomes containing DJ-1. We also observe that while the widely studied L166P mutation prevents DJ-1 from forming homodimers or heterodimers with wild-type protein, the mutant protein is able to partially disrupt formation of wild-type homodimers. In summary, by investigating DJ-1 dimerization in living cells, we have uncovered several novel properties of PD causative mutations in DJ-1, which may ultimately provide novel insight into PD pathogenesis and possible therapeutic options
The Bright End of the z~9 and z~10 UV Luminosity Functions using all five CANDELS Fields
The deep, wide-area (~800-900 arcmin**2) near-infrared/WFC3/IR + Spitzer/IRAC
observations over the CANDELS fields have been a remarkable resource for
constraining the bright end of high redshift UV luminosity functions (LFs).
However, the lack of HST 1.05-micron observations over the CANDELS fields has
made it difficult to identify z~9-10 sources robustly, since such data are
needed to confirm the presence of an abrupt Lyman break at 1.2 microns. We
report here on the successful identification of many such z~9-10 sources from a
new HST program (z9-CANDELS) that targets the highest-probability z~9-10 galaxy
candidates with observations at 1.05 microns, to search for a robust
Lyman-break at 1.2 microns. The potential z~9-10 candidates are preselected
from the full HST, Spitzer/IRAC S-CANDELS observations, and the
deepest-available ground-based optical+near-infrared observations. We
identified 15 credible z~9-10 galaxies over the CANDELS fields. Nine of these
galaxies lie at z~9 and 5 are new identifications. Our targeted follow-up
strategy has proven to be very efficient in making use of scarce HST time to
secure a reliable sample of z~9-10 galaxies. Through extensive simulations, we
replicate the selection process for our sample (both the preselection and
follow-up) and use it to improve current estimates for the volume density of
bright z~9 and z~10 galaxies. The volume densities we find are 5(-2)(+3)x and
8(-3)(+9)x lower, respectively, than found at z~8. When compared with the
best-fit evolution (i.e., dlog_{10} rho(UV)/dz=-0.29+/-0.02) in the UV
luminosities densities from z~8 to z~4 integrated to 0.3L*(z=3) (-20 mag),
these luminosity densities are 2.6(-0.9)(+1.5)x and 2.2(-1.1)(+2.0)x lower,
respectively, than the extrapolated trends. Our new results are broadly
consistent with the "accelerated evolution" scenario at z>8, as seen in many
theoretical models.Comment: 23 pages, 15 figures, 7 tables, updated to match the version in
press, including some minor textual corrections identified at the proof stag
ZFOURGE: Using Composite Spectral Energy Distributions to Characterize Galaxy Populations at 1<z<4
We investigate the properties of galaxies as they shut off star formation
over the 4 billion years surrounding peak cosmic star formation. To do this we
categorize galaxies from into groups based on the shape
of their spectral energy distributions (SEDs) and build composite SEDs with
resolution. These composite SEDs show a variety of spectral shapes
and also show trends in parameters such as color, mass, star formation rate,
and emission line equivalent width. Using emission line equivalent widths and
strength of the 4000\AA\ break, , we categorize the composite SEDs
into five classes: extreme emission line, star-forming, transitioning,
post-starburst, and quiescent galaxies. The transitioning population of
galaxies show modest H emission (\AA) compared to
more typical star-forming composite SEDs at
(\AA). Together with their smaller sizes (3 kpc vs. 4 kpc)
and higher S\'ersic indices (2.7 vs. 1.5), this indicates that morphological
changes initiate before the cessation of star formation. The transitional group
shows a strong increase of over one dex in number density from to
, similar to the growth in the quiescent population, while
post-starburst galaxies become rarer at . We calculate average
quenching timescales of 1.6 Gyr at and 0.9 Gyr at and
conclude that a fast quenching mechanism producing post-starbursts dominated
the quenching of galaxies at early times, while a slower process has become
more common since .Comment: Accepted for publication in The Astrophysical Journa
- …