42 research outputs found

    nuclear physics and its role for describing the early universe

    Get PDF
    Big Bang Nucleosynthesis (BBN) requires several nuclear physics inputs and nuclear reaction rates. An up-to-date compilation of direct cross sections of [Formula: see text], [Formula: see text]He and [Formula: see text]He reactions is given, being these ones among the most uncertain bare-nucleus cross sections. An intense experimental effort has been carried on in the last decade to apply the Trojan Horse Method (THM) to study reactions of relevance for the BBN and measure their astrophysical S(E)-factor. The reaction rates and the relative error for the four reactions of interest are then numerically calculated in the temperature ranges of relevance for BBN [Formula: see text]. These value were then used as input physics for primordial nucleosynthesis calculations in order to evaluate their impact on the calculated primordial abundances and isotopical composition for H, He and Li. New results on the [Formula: see text]He reaction rate were also taken into account.These were compared with the observational primordial abundance estimates in different astrophysical sites. Reactions to be studied in perspective will also be discussed

    THM and primordial nucleosynthesis: Results and perspectives

    Get PDF
    Big Bang Nucleosynthesis (BBN) requires several nuclear physics inputs and nuclear reaction rates. An up-to-date compilation of direct cross sections of d(d,p)t, d(d,n)3He and 3He(d,p)4He reactions is given, being these ones among the most uncertain bare-nucleus cross sections. An intense experimental effort has been carried on in the last decade to apply the Trojan Horse Method (THM) to study reactions of relevance for the BBN and measure their astrophysical S(E)factor. The reaction rates and the relative error for the four reactions of interest are then numerically calculated in the temperature ranges of relevance for BBN (0.01 <T 9 < 10). Their value were therefore used as input physics for primordial nucleosynthesis calculations in order to evaluate their impact on the calculated primordial abundances of D, 3,4He and 7Li. These were compared with the observational primordial abundance estimates in different astrophysical sites. Reactions to be studied in perspective will also be discussed

    Improved information on astrophysical S-factor for the 10B(p,α0)7Be reaction using the Trojan Horse method

    Get PDF
    The 10B(p,α0)7Be reaction has been studied by applying the Trojan Horse method to the 2H(10B,α0 7Be)n reaction. The bare-nucleus astrophysical S(E)-factor in absolute units was extracted in a wide energy range, from 2.2 MeV to 3 keV and normalized to the direct experimental data, thus allowing determination of the electron screening potential for which a value of Ue=391±74 eV was obtained

    The Trojan Horse Method application on the 10B(p,α0)7Be reaction cross section measurements

    Get PDF
    The 10 B(p,α 0 ) 7 Be reaction cross section has been measured in an wide energy range from 2.2 MeV down to 3 keV in a single experiment applying THM. Optimized experimental set-up ensured good energy resolution leading to a good separation of α 0 and α 1 contributions to the cross section coming from the 7 Be ground and first excited state, respectively

    26Mg target for nuclear astrophysics measurements

    Get PDF
    Two nuclear reactions of astrophysical interest, 26Mg(3He,d)27Al and 26Mg(d,p)27Mg, were measured for extraction of the Asymptotic Normalization Coefficients. Investigation of the target composition is presented, as well as the effects that showed up during analysis of the in-beam data obtained on CANAM accelerators in the Nuclear Physics Institute of the Czech Academy of Sciences (NPI CAS)

    The 19F(α, p)22Ne and 23Na(p,α)20Ne reaction in AGB nucleosynthesis via THM

    Get PDF
    In AGB environment, fluorine and sodium abundances are still matter of debate. About 19F (only stable isotope of fluorine), its abundance in the universe is strictly related to standard and extra-mixing processes taking place inside AGB-stars, that are considered to be the most important sites for its production. Nevertheless the way in which it is destroyed is far from being well understood. On the other hand, 23Na presence in Globular Clusters, along with is well-known anticorrelation with oxygen has made clear that this element must be produced in previous generations stars, and intermediatemass AGB stars are one of the possible candidates for its production. For this reason we studied the 19F(α,p)22Ne and 23Na(p,α)20Ne reactions in the energy range of relevance for astrophysics via the Trojan Horse Method (THM), using the three-body reactions 6Li(19F, p22Ne)d and 23Na(d, pn)20Ne

    Clusters and their fundamental role for Trojan Horse Method

    No full text
    The Trojan Horse Method (THM) lays its foundations on the cluster structure of light nuclei which are usually used as “Trojan horses”. Many of them were successfully employed in the last decades to shed light to numerous astrophysical problems. Cluster structure and dynamics also suggest a series of tests which may be performed in order to strengthen the basis of the method. Among them pole invariance was investigated for three different situations. In fact, the cross sections for the 6^6Li(d, α)4\alpha )^4He, 2^2H(d,p)3^3H and 7^7Li(p, α)4\alpha )^4He binary reactions were measured for several break-up schemes and analyzed within the framework of the Plane Wave Impulse Approximation (PWIA). The indirect results extracted by using different Trojan Horse nuclei (e.g. 2^2H, 3^3He, 6^6Li) were compared with each other as well as with direct measurements of the corresponding astrophysical reactions. The very good agreement obtained confirms the applicability of the pole approximation and of the pole invariance method, namely the independence of binary indirect cross section on the chosen Trojan Horse nucleus, at least for the cases investigated. Moreover, we can verify that the effect of using a charged or a neutral particle as a spectator implies negligible corrections consistent with the experimental errors. In addition, the dynamics of clusters inside the Trojan Horse nucleus and their fingerprints on the measured momentum distribution play a key role for THM applications. In this article we will therefore discuss also these assertions studied in different systems(2^2H, 3^3He, 6^6Li, 9^9Be, 14^{14}N) and in particular for the deuteron case the relative impact of s and d waves in the momentum distribution will also be examined

    Primordial nucleosynthesis revisited via Trojan Horse Results

    No full text
    Big Bang Nucleosynthesis (BBN) requires several nuclear physics inputs and nuclear reaction rates. An up-to-date compilation of direct cross sections of d(d,p)t, d(d,n)3He and 3He(d,p)4He reactions is given, being these ones among the most uncertain bare-nucleus cross sections. An intense experimental effort has been carried on in the last decade to apply the Trojan Horse Method (THM) to study reactions of relevance for the BBN and measure their astrophysical S(E)-factor. The reaction rates and the relative error for the four reactions of interest are then numerically calculated in the temperature ranges of relevance for BBN (0.01<T9 <10). Their value were therefore used as input physics for primordial nucleosynthesis calculations in order to evaluate their impact on the calculated primordial abundances of D, 3,4He and 7Li. These were compared with the observational primordial abundance estimates in different astrophysical sites. A comparison was also performed with calculations using other reaction rates compilations available in literature
    corecore