246 research outputs found
About the screening of the charge of a proton migrating in a metal
The amount of screening of a proton in a metal, migrating under the influence
of an applied electric field, is calculated using different theoretical
formulations. First the lowest order screening expression derived by Sham
(1975) is evaluated. In addition 'exact' expressions are evaluated which were
derived according to different approaches. For a proton in a metal modeled as a
jellium the screening appears to be 15 +/- 10 %, which is neither negligible
not reconcilable with the controversial full-screening point of view of
Bosvieux and Friedel (1962). In reconsidering the theory of electromigration, a
new simplified linear-response expression for the driving force is shown to
lead to essentially the same result as found by Sorbello (1985), who has used a
rather complicated technique. The expressions allow for a reduction such that
only the scattering phase shifts of the migrating impurity are required.
Finally it is shown that the starting formula for the driving force of Bosvieux
and Friedel leads exactly to the zero-temperature limit of well-established
linear response descriptions, by which the sting of the controversy has been
removed.Comment: 14 pages, 5 figure
Electromigration in thin tunnel junctions with ferromagnetic/nonmagnetic: nanoconstrictions, local heating, and direct and wind forces
Current Induced Resistance Switching (CIS) was recently observed in thin
tunnel junctions with ferromagnetic (FM) electrodes \emph{i.e} FM/I/FM. This
effect was attributed to electromigration of metallic atoms in
nanoconstrictions in the insulating barrier (I). Here we study how the CIS
effect is influenced by a thin non-magnetic (NM) Ta layer, deposited just below
the AlO insulating barrier in tunnel junctions of the type FM/NM/I/FM
(FM=CoFe). Enhanced resistance switching occurs with increasing maximum applied
current (\Imax), until a plateau of constant CIS is reached for \Imax\sim65
mA (CIS60%) and above. However, such high electrical currents also lead
to a large (9%) irreversible resistance decrease, indicating barrier
degradation. Anomalous voltage-current characteristics with negative derivative
were also observed near \pm\Imax and this effect is here attributed to
heating in the tunnel junction. One observes that the current direction for
which resistance switches in FM/NM/I/FM (clockwise) is opposite to that of
FM/I/FM tunnel junctions (anti-clockwise). This effect will be discussed in
terms of a competition between the electromigration contributions due to the so
called direct and wind forces. It will be shown that the direct force is likely
to dominate electromigration in the Ta (NM) layers, while the wind contribution
likely dominates in the CoFe (FM) layers
The role of Joule heating in the formation of nanogaps by electromigration
We investigate the formation of nanogaps in gold wires due to
electromigration. We show that the breaking process will not start until a
local temperature of typically 400 K is reached by Joule heating. This value is
rather independent of the temperature of the sample environment (4.2-295 K).
Furthermore, we demonstrate that the breaking dynamics can be controlled by
minimizing the total series resistance of the system. In this way, the local
temperature rise just before break down is limited and melting effects are
prevented. Hence, electrodes with gaps < 2 nm are easily made, without the need
of active feedback. For optimized samples, we observe quantized conductance
steps prior the gap formation.Comment: including 7 figure
Current-driven orbital order-disorder transition in LaMnO3
We report significant influence of electric current on the orbital
order-disorder transition in LaMnO3. The transition temperature T_OO, thermal
hysteresis in the resistivity (rho) versus temperature (T) plot around T_OO,
and latent heat L associated with the transition decrease with the increase in
current density. Eventually, at a critical current density, L reaches zero. The
transition zone, on the other hand, broadens with the increase in current
density. The states at ordered, disordered, and transition zone are all found
to be stable within the time window from ~10^-3 to ~10^4 seconds.Comment: 7 pages including 5 figures; resolution of Fig.1 is better here than
the published versio
Are current-induced forces conservative?
The expression for the force on an ion in the presence of current can be
derived from first principles without any assumption about its conservative
character. However, energy functionals have been constructed that indicate that
this force can be written as the derivative of a potential function. On the
other hand, there exist compelling specific arguments that strongly suggest the
contrary. We propose physical mechanisms that invalidate such arguments and
demonstrate their existence with first-principles calculations. While our
results do not constitute a formal resolution to the fundamental question of
whether current-induced forces are conservative, they represent a substantial
step forward in this direction.Comment: 4 pages, 4 Figures, submitted to PR
Time-dependent quantum transport with superconducting leads: a discrete basis Kohn-Sham formulation and propagation scheme
In this work we put forward an exact one-particle framework to study
nano-scale Josephson junctions out of equilibrium and propose a propagation
scheme to calculate the time-dependent current in response to an external
applied bias. Using a discrete basis set and Peierls phases for the
electromagnetic field we prove that the current and pairing densities in a
superconducting system of interacting electrons can be reproduced in a
non-interacting Kohn-Sham (KS) system under the influence of different Peierls
phases {\em and} of a pairing field. An extended Keldysh formalism for the
non-equilibrium Nambu-Green's function (NEGF) is then introduced to calculate
the short- and long-time response of the KS system. The equivalence between the
NEGF approach and a combination of the static and time-dependent
Bogoliubov-deGennes (BdG) equations is shown. For systems consisting of a
finite region coupled to superconducting semi-infinite leads we
numerically solve the static BdG equations with a generalized wave-guide
approach and their time-dependent version with an embedded Crank-Nicholson
scheme. To demonstrate the feasibility of the propagation scheme we study two
paradigmatic models, the single-level quantum dot and a tight-binding chain,
under dc, ac and pulse biases. We provide a time-dependent picture of single
and multiple Andreev reflections, show that Andreev bound states can be
exploited to generate a zero-bias ac current of tunable frequency, and find a
long-living resonant effect induced by microwave irradiation of appropriate
frequency.Comment: 20 pages, 9 figures, published versio
Electrical current-driven pinhole formation and insulator-metal transition in tunnel junctions
Current Induced Resistance Switching (CIS) was recently observed in thin
tunnel junctions (TJs) with ferromagnetic (FM) electrodes and attributed to
electromigration of metallic atoms in nanoconstrictions in the insulating
barrier. The CIS effect is here studied in TJs with two thin (20 \AA)
non-magnetic (NM) Ta electrodes inserted above and below the insulating
barrier. We observe resistance (R) switching for positive applied electrical
current (flowing from the bottom to the top lead), characterized by a
continuous resistance decrease and associated with current-driven displacement
of metallic ions from the bottom electrode into the barrier (thin barrier
state). For negative currents, displaced ions return into their initial
positions in the electrode and the electrical resistance gradually increases
(thick barrier state). We measured the temperature (T) dependence of the
electrical resistance of both thin- and thick-barrier states ( and R
respectively). Experiments showed a weaker R(T) variation when the tunnel
junction is in the state, associated with a smaller tunnel contribution.
By applying large enough electrical currents we induced large irreversible
R-decreases in the studied TJs, associated with barrier degradation. We then
monitored the evolution of the R(T) dependence for different stages of barrier
degradation. In particular, we observed a smooth transition from tunnel- to
metallic-dominated transport. The initial degradation-stages are related to
irreversible barrier thickness decreases (without the formation of pinholes).
Only for later barrier degradation stages do we have the appearance of metallic
paths between the two electrodes that, however, do not lead to metallic
dominated transport for small enough pinhole radius.Comment: 10 pages, 3 figure
Telenoid android robot as an embodied perceptual social regulation medium engaging natural human–humanoid interaction
The present paper aims to validate our research on human–humanoid interaction (HHI) using the
minimalist humanoid robot Telenoid. We conducted the human–robot interaction test with 142 young people who had no prior interaction experience with this robot. The main goal is the analysis of the two social dimensions (‘‘Perception’’ and ‘‘Believability’’) useful for increasing the natural behaviour between users and Telenoid.Weadministered our custom questionnaire to human subjects in association with a well defined experimental setting (‘‘ordinary and goal-guided task’’). A thorough analysis of the questionnaires has been carried out and reliability and internal consistency in correlation between the multiple items has been calculated. Our experimental results show that the perceptual behaviour and believability, as implicit social competences, could improve the meaningfulness and the natural-like sense of human–humanoid interaction in everyday life task-driven activities. Telenoid is perceived as an autonomous cooperative agent for a shared environment by human beings
- …