7 research outputs found

    Kirchhoff's Rule for Quantum Wires

    Full text link
    In this article we formulate and discuss one particle quantum scattering theory on an arbitrary finite graph with nn open ends and where we define the Hamiltonian to be (minus) the Laplace operator with general boundary conditions at the vertices. This results in a scattering theory with nn channels. The corresponding on-shell S-matrix formed by the reflection and transmission amplitudes for incoming plane waves of energy E>0E>0 is explicitly given in terms of the boundary conditions and the lengths of the internal lines. It is shown to be unitary, which may be viewed as the quantum version of Kirchhoff's law. We exhibit covariance and symmetry properties. It is symmetric if the boundary conditions are real. Also there is a duality transformation on the set of boundary conditions and the lengths of the internal lines such that the low energy behaviour of one theory gives the high energy behaviour of the transformed theory. Finally we provide a composition rule by which the on-shell S-matrix of a graph is factorizable in terms of the S-matrices of its subgraphs. All proofs only use known facts from the theory of self-adjoint extensions, standard linear algebra, complex function theory and elementary arguments from the theory of Hermitean symplectic forms.Comment: 40 page

    Random Matrices close to Hermitian or unitary: overview of methods and results

    Full text link
    The paper discusses progress in understanding statistical properties of complex eigenvalues (and corresponding eigenvectors) of weakly non-unitary and non-Hermitian random matrices. Ensembles of this type emerge in various physical contexts, most importantly in random matrix description of quantum chaotic scattering as well as in the context of QCD-inspired random matrix models.Comment: Published version, with a few more misprints correcte
    corecore