5,042 research outputs found

    An information adaptive system study report and development plan

    Get PDF
    The purpose of the information adaptive system (IAS) study was to determine how some selected Earth resource applications may be processed onboard a spacecraft and to provide a detailed preliminary IAS design for these applications. Detailed investigations of a number of applications were conducted with regard to IAS and three were selected for further analysis. Areas of future research and development include algorithmic specifications, system design specifications, and IAS recommended time lines

    Submilliamp threshold InGaAs-GaAs strained layer quantum-well laser

    Get PDF
    Strained-layer InGaAs-GaAs single-quantum-well buried-heterostructure lasers were fabricated by a hybrid beam epitaxy and liquid-phase epitaxy technique. Very low threshold currents, 2.4 mA for an uncoated laser (L=425 μm) and 0.75 mA for a coated laser (R~0.9, L=198 μm), were obtained. A 3-dB modulation bandwidth of 7.6 GHz was demonstrated at low bias current (14 mA). Procedures for material preparation and device fabrication are introduced

    Unconventional Hall effect in oriented Ca3_3Co4_4O9_9 thin films

    Full text link
    Transport properties of the good thermoelectric misfit oxide Ca3_3Co4_4O9_9 are examined. In-plane resistivity and Hall resistance measurements were made on epitaxial thin films which were grown on {\it c}-cut sapphire substrates using the pulsed laser deposition technique. Interpretation of the in-plane transport experiments relates the substrate-induced strain in the resulting film to single crystals under very high pressure (\sim 5.5 GPa) consistent with a key role of strong electronic correlation. They are confirmed by the measured high temperature maxima in both resistivity and Hall resistance. While hole-like charge carriers are inferred from the Hall effect measurements over the whole investigated temperature range, the Hall resistance reveals a non monotonic behavior at low temperatures that could be interpreted with an anomalous contribution. The resulting unconventional temperature dependence of the Hall resistance seems thus to combine high temperature strongly correlated features above 340 K and anomalous Hall effect at low temperature, below 100 K.Comment: Submitted to Physical Review B (2005

    Double quantum dot with tunable coupling in an enhancement-mode silicon metal-oxide semiconductor device with lateral geometry

    Full text link
    We present transport measurements of a tunable silicon metal-oxide-semiconductor double quantum dot device with lateral geometry. Experimentally extracted gate-to-dot capacitances show that the device is largely symmetric under the gate voltages applied. Intriguingly, these gate voltages themselves are not symmetric. Comparison with numerical simulations indicates that the applied gate voltages serve to offset an intrinsic asymmetry in the physical device. We also show a transition from a large single dot to two well isolated coupled dots, where the central gate of the device is used to controllably tune the interdot coupling.Comment: 4 pages, 3 figures, to be published in Applied Physics Letter

    Study of Magnetic Properties of A_2B^'NbO_6 (A=Ba,Sr, (BaSr): and B^'=Fe and Mn) double perovskites

    Full text link
    We have studied the magnetic properties of Ba_2FeNbO_6 and Ba_2MnNbO_6. it is seen that Ba_2FeNbO_6 is an antiferromagnet with a weak ferromagnetic behaviour at 5K while Ba_2MnNbO_6 shows two magnetic transitions one at 45 K and the other at 12K. Electron spin resonance (ESR) measurements at room temperature show that the Mn compound does not show any Jahn-Teller distortion. It is also seen that the Neel temperature of the A_2FeNbO_6 (A=Ba,Sr, BaSr) compounds do not vary significantly. However variations in the average A-site ionic radius influence the formation of short range correlations that persist above T_N.Comment: 10 oages, 5 figures, MMM, to appear in J.Appl.Phy

    Retreatment with anti-EGFR based therapies in metastatic colorectal cancer: impact of intervening time interval and prior anti-EGFR response.

    Get PDF
    BackgroundThis retrospective study aims to investigate the activity of retreatment with anti-EGFR-based therapies in order to explore the concept of clonal evolution by evaluating the impact of prior activity and intervening time interval.MethodsEighty-nine KRAS exon 2-wild-type metastatic colorectal patients were retreated on phase I/II clinical trials containing anti-EGFR therapies after progressing on prior cetuximab or panitumumab. Response on prior anti-EGFR therapy was defined retrospectively per physician-records as response or stable disease ≥6 months. Multivariable statistical methods included a multiple logistic regression model for response, and Cox proportional hazards model for progression-free survival.ResultsRetreatment anti-EGFR agents were cetuximab (n = 76) or cetuximab plus erlotinib (n = 13). The median interval time between prior and retreatment regimens was 4.57 months (range: 0.46-58.7). Patients who responded to the prior cetuximab or panitumumab were more likely to obtain clinical benefit to the retreatment compared to the non-responders in both univariate (p = 0.007) and multivariate analyses (OR: 3.38, 95 % CI: 1.27, 9.31, p = 0.019). The clinical benefit rate on retreatment also showed a marginally significant association with interval time between the two anti-EGFR based therapies (p = 0.053). Median progression-free survival on retreatment was increased in prior responders (4.9 months, 95 % CI: 3.6, 6.2) compared to prior non-responders (2.5 months, 95 % CI, 1.58, 3.42) in univariate (p = 0.064) and multivariate analysis (HR: 0.70, 95 % CI: 0.43-1.15, p = 0.156).ConclusionOur data lends support to the concept of clonal evolution, though the clinical impact appears less robust than previously reported. Further work to determine which patients benefit from retreatment post progression is needed

    Superoxide Signaling in Perivascular Adipose Tissue Promotes Age-Related Artery Stiffness

    Get PDF
    We tested the hypothesis that superoxide signaling within aortic perivascular adipose tissue (PVAT) contributes to large elastic artery stiffening in old mice. Young (4-6 months), old (26-28 months), and old treated with 4-Hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPOL), a superoxide scavenger (1 mm in drinking water for 3 weeks), male C57BL6/N mice were studied. Compared with young, old had greater large artery stiffness assessed by aortic pulse wave velocity (aPWV, 436 ± 9 vs. 344 ± 5 cm s(-1)) and intrinsic mechanical testing (3821 ± 427 vs. 1925 ± 271 kPa) (both P \u3c 0.05). TEMPOL treatment in old reversed both measures of arterial stiffness. Aortic PVAT superoxide production was greater in old (P \u3c 0.05 vs. Y), which was normalized with TEMPOL. Compared with young, old controls had greater pro-inflammatory proteins in PVAT-conditioned media (P \u3c 0.05). Young recipient mice transplanted with PVAT from old compared with young donors for 8 weeks had greater aPWV (409 ± 7 vs. 342 ± 8 cm s(-1)) and intrinsic mechanical properties (3197 ± 647 vs. 1889 ± 520 kPa) (both P \u3c 0.05), which was abolished with TEMPOL supplementation in old donors. Tissue-cultured aortic segments from old in the presence of PVAT had greater mechanical stiffening compared with old cultured in the absence of PVAT and old with PVAT and TEMPOL (both, P \u3c 0.05). In addition, PVAT-derived superoxide was associated with arterial wall hypertrophy and greater adventitial collagen I expression with aging that was attenuated by TEMPOL. Aging or TEMPOL treatment did not affect blood pressure. Our findings provide evidence for greater age-related superoxide production and pro-inflammatory proteins in PVAT, and directly link superoxide signaling in PVAT to large elastic artery stiffness

    Extremely efficient clocked electron transfer on superfluid helium

    Full text link
    Unprecedented transport efficiency is demonstrated for electrons on the surface of micron-scale superfluid helium filled channels by co-opting silicon processing technology to construct the equivalent of a charge-coupled device (CCD). Strong fringing fields lead to undetectably rare transfer failures after over a billion cycles in two dimensions. This extremely efficient transport is measured in 120 channels simultaneously with packets of up to 20 electrons, and down to singly occupied pixels. These results point the way towards the large scale transport of either computational qubits or electron spin qubits used for communications in a hybrid qubit system
    corecore