422 research outputs found

    HBIM for conservation: A new proposal for information modeling

    Get PDF
    Thanks to its capability of archiving and organizing all the information about a building, HBIM (Historical Building Information Modeling) is considered a promising resource for planned conservation of historical assets. However, its usage remains limited and scarcely adopted by the subjects in charge of conservation, mainly because of its rather complex 3D modeling requirements and a lack of shared regulatory references and guidelines as far as semantic data are concerned. In this study, we developed an HBIM methodology to support documentation, management, and planned conservation of historic buildings, with particular focus on non-geometric information: organized and coordinated storage and management of historical data, easy analysis and query, time management, flexibility, user-friendliness, and information sharing. The system is based on a standalone specific-designed database linked to the 3D model of the asset, built with BIM software, and it is highly adaptable to different assets. The database is accessible both with a developed desktop application, which acts as a plug-in for the BIM software, and through a web interface, implemented to ensure data sharing and easy usability by skilled and unskilled users. The paper describes in detail the implemented system, passing by semantic breaking down of the building, database design, as well as system architecture and capabilities. Two case studies, the Cathedral of Parma and Ducal Palace of Mantua (Italy), are then presented to show the results of the system's application

    Uav block geometry design and camera calibration: A simulation study

    Get PDF
    Acknowledged guidelines and standards such as those formerly governing project planning in analogue aerial photogrammetry are still missing in UAV photogrammetry. The reasons are many, from a great variety of projects goals to the number of parameters involved: camera features, flight plan design, block control and georeferencing options, Structure from Motion settings, etc. Above all, perhaps, stands camera calibration with the alternative between pre-and on-the-job approaches. In this paper we present a Monte Carlo simulation study where the accuracy estimation of camera parameters and tie points’ ground coordinates is evaluated as a function of various project parameters. A set of UAV (Unmanned Aerial Vehicle) synthetic photogrammetric blocks, built by varying terrain shape, surveyed area shape, block control (ground and aerial), strip type (longitudinal, cross and oblique), image observation and control data precision has been synthetically generated, overall considering 144 combinations in on-the-job self-calibration. Bias in ground coordinates (dome effect) due to inaccurate pre-calibration has also been investigated. Under the test scenario, the accuracy gap between different block configurations can be close to an order of magnitude. Oblique imaging is confirmed as key requisite in flat terrain, while ground control density is not. Aerial control by accurate camera station positions is overall more accurate and efficient than GCP in flat terrain

    A comparison of semiglobal and local dense matching algorithms for surface reconstruction

    Get PDF
    Encouraged by the growing interest in automatic 3D image-based reconstruction, the development and improvement of robust stereo matching techniques is one of the most investigated research topic of the last years in photogrammetry and computer vision. The paper is focused on the comparison of some stereo matching algorithms (local and global) which are very popular both in photogrammetry and computer vision. In particular, the Semi-Global Matching (SGM), which realizes a pixel-wise matching and relies on the application of consistency constraints during the matching cost aggregation, will be discussed. The results of some tests performed on real and simulated stereo image datasets, evaluating in particular the accuracy of the obtained digital surface models, will be presented. Several algorithms and different implementation are considered in the comparison, using freeware software codes like MICMAC and OpenCV, commercial software (e.g. Agisoft PhotoScan) and proprietary codes implementing Least Square e Semi-Global Matching algorithms. The comparisons will also consider the completeness and the level of detail within fine structures, and the reliability and repeatability of the obtainable data

    A NOVEL IMAGE ACQUISITION AND PROCESSING PROCEDURE FOR FAST TUNNEL DSM PRODUCTION

    Get PDF
    In mining operations the evaluation of the stability condition of the excavated front are critic to ensure a safe and correct planning of the subsequent activities. The procedure currently used to this aim has some shortcomings: safety for the geologist, completeness of data collection and objective documentation of the results. In the last decade it has been shown that the geostructural parameters necessary to the stability analysis can be derived from high resolution digital surface models (DSM) of rock faces. With the objective to overcome the limitation of the traditional survey and to minimize data capture times, so reducing delays on mining site operations, a photogrammetric system to generate high resolution DSM of tunnels has been realized. A fast, effective and complete data capture method has been developed and the orientation and restitution phases have been largely automated. The survey operations take no more than required to the traditional ones; no additional topographic measurements other than those available are required. To make the data processing fast and economic our Structure from Motion procedure has been slightly modified to adapt to the peculiar block geometry while, the DSM of the tunnel is created using automatic image correlation techniques. The geomechanical data are sampled on the DSM, by using the acquired images in a GUI and a segmentation procedure to select discontinuity planes. To allow an easier and faster identification of relevant features of the surface of the tunnel, using again an automatic procedure, an orthophoto of the tunnel is produced. A case study where a tunnel section of ca. 130 m has been surveyed is presented

    A monte carlo simulation study on the dome effect

    Get PDF
    A dome-shape deformation has been found to affect the photogrammetric surface reconstruction in several real and simulated experiments. Its origin has been recognised in inaccurate estimation of the camera parameters and many papers already concentrated on conditions to avoid its development, especially as far as block design is concerned. This paper presents a Monte Carlo simulation to investigate surface reconstruction elevation errors in UAV (Unmanned Aerial Vehicle) photogrammetric blocks. The simulation tests are designed to find out the effect of block shape, camera axis inclination, side-lap, cross strips addition and block control by GCP or GNSS-assisted on the extent of the deformations. The main findings are: i) that GNSS-assisted blocks are generally more robust compared to GCP-controlled ones; ii) that, in GNSS-assisted blocks, unless a mix of nadiral and inclined strips is present, at least one fixed GCP must be provided; iii) that cross strip can conveniently be slimmed to save flight time and processing time; iv) that the effectiveness of GNSS deteriorate as the block shape slims out

    Low-cost modular battery emulator for battery management system testing

    Get PDF
    This paper discusses the implementation of a custom battery emulator, specifically designed for functional testing of battery management systems at the end of the production line. Particular care has been paid to make the design of the battery emulator modular and low cost. These characteristics are sought in relatively low-volume medium-power battery applications, where the adoption of conventional hardware-in-the-loop solutions is not viable. A prototype of battery emulator has been implemented, validated, and successfully used to test a battery management system for 12 series-connected cells

    Simulation platform for analyzing battery parallelization

    Get PDF
    This paper discusses a simulation platform for predicting the behavior of a battery system comprising two batteries, which can be parallelized in a controllable way. The model of the battery, the load and the parallelization algorithm is developed and simulated in MATLAB® Simulink environment. The simulation platform and the proposed parallelization algorithm are validated in a real gardening application. The simulation results prove to be useful for further investigation into the benefits of battery parallelization in terms of reduced battery aging and improved energy efficiency

    Multi-Temporal Image Co-Registration Of Uav Blocks: A Comparison Of Different Approaches

    Get PDF
    Traditionally, data co-registration of survey epochs in photogrammetry relied on Ground Control Points (GCP) to keep the reference system unchanged. In the last years, Unmanned Aerial Systems (UAV) are increasingly used in photogrammetric environmental monitoring. The diffusion of affordable UAV platforms equipped with GNSS (Global Navigation Satellite System) centimetre-grade receivers might reduce, but not eliminate, the need for GCP. Conversely, if GNSS-assisted orientation cannot be used or if additional ground control and reliability checks are required, alternatives to repeated GCP survey have been proposed, taking advantage of Structure from Motion (SfM) photogrammetry. In particular, co-registering different epochs image blocks together, identifying corresponding features, has been demonstrated as a viable and efficient approach. In this paper four different strategies easily implementable in a generic commercial photogrammetric software are presented and compared considering three different test sites in Italy subject to different amounts of environmental changes. The influence of the amount and distribution of inter-epoch corresponding points on the accuracy of the reconstruction is investigated. The results show that some of the tested strategies obtains very good results and can be used (although not needed) also in RTK centimetre-grade UAV surveys, leveraging the additional information coming from previous epochs survey to actually increase the survey accuracy and reliability

    PHOTOGRAMMETRIC SURVEY OF NARROW SPACES IN CULTURAL HERITAGE: COMPARISON OF TWO MULTI-CAMERA APPROACHES

    Get PDF
    Multi-camera devices are increasingly popular in various metrological applications, including cultural heritage digitalisation, where these devices are adopted as low-cost alternatives to more traditional methods or mobile mapping systems. They can be of two types: panoramic and non-panoramic configurations, with the former usually more compact and ready-made off-The-shelves and the latter usually custom-developed for metrological applications. In the paper, we compare the accuracy and reliability performance of two types of multi-camera: The spherical camera INSTA 360 Pro2 and the custom multi-camera rig Ant3D. The case study is a challenging spiral staircase environment, typical in many cultural heritage survey projects. The processed image datasets were evaluated in the most common constrain scenario (GCPs at both ends of the staircase) and the worst-case scenario (open-ended path, GCPs at the start). The datasets were processed with precalibrated IO and various degrees of multi-camera constraints up to precalibrated relative orientations. The results highlight that the nominal scale 1:50 can be achieved, e.g. an accuracy of <2 cm plus complete and precise point clouds and mesh results

    Landslide monitoring by fixed-base terrestrial stereo-photogrammetry

    Get PDF
    Photogrammetry has been used since long to periodically control the evolution of landslides; however, true monitoring is reserved to robotic total stations and ground based InSAR systems, capable of high frequency, high accurate 24h/day response. This paper presents the first results of a fixed terrestrial stereo photogrammetric system developed to monitor shape changes of the scene. The system is made of two reflex cameras, each contained in a sealed box with a control computer that periodically acquires an image and send it to a host computer; once an image pair is received from the two cameras, the DSM of the scene is generated by image correlation and made available for archiving or analysis. The system has been installed and is being tested on the Mont de la Saxe landslide, where several monitoring system are active. Some instability of the camera attitude has been noticed and is corrected with an automated procedure. First comparisons with InSAR data show a good agreement
    • …
    corecore