335 research outputs found
A computational analysis of lower bounds for big bucket production planning problems
In this paper, we analyze a variety of approaches to obtain lower bounds for multi-level production planning problems with big bucket capacities, i.e., problems in which multiple items compete for the same resources. We give an extensive survey of both known and new methods, and also establish relationships between some of these methods that, to our knowledge, have not been presented before. As will be highlighted, understanding the substructures of difficult problems provide crucial insights on why these problems are hard to solve, and this is addressed by a thorough analysis in the paper. We conclude with computational results on a variety of widely used test sets, and a discussion of future research
Mixed integer programming in production planning with backlogging and setup carryover : modeling and algorithms
This paper proposes a mixed integer programming formulation for modeling the capacitated multi-level lot sizing problem with both backlogging and setup carryover. Based on the model formulation, a progressive time-oriented decomposition heuristic framework is then proposed, where improvement and construction heuristics are effectively combined, therefore efficiently avoiding the weaknesses associated with the one-time decisions made by other classical time-oriented decomposition algorithms. Computational results show that the proposed optimization framework provides competitive solutions within a reasonable time
FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast
The budding yeast, Saccharomyces cerevisiae, has emerged as an archetype of eukaryotic cell biology. Here we show that S. cerevisiae is also a model for the evolution of cooperative behavior by revisiting flocculation, a self-adherence phenotype lacking in most laboratory strains. Expression of the gene FLO1 in the laboratory strain S288C restores flocculation, an altered physiological state, reminiscent of bacterial biofilms. Flocculation protects the FLO1 expressing cells from multiple stresses, including antimicrobials and ethanol. Furthermore, FLO1(+) cells avoid exploitation by nonexpressing flo1 cells by self/non-self recognition: FLO1(+) cells preferentially stick to one another, regardless of genetic relatedness across the rest of the genome. Flocculation, therefore, is driven by one of a few known "green beard genes,'' which direct cooperation toward other carriers of the same gene. Moreover, FLO1 is highly variable among strains both in expression and in sequence, suggesting that flocculation in S. cerevisiae is a dynamic, rapidly evolving social trait
Spin Reorientations Induced by Morphology Changes in Fe/Ag(001)
By means of magneto-optical Kerr effect we observe spin reorientations from
in-plane to out-of-plane and vice versa upon annealing thin Fe films on Ag(001)
at increasing temperatures. Scanning tunneling microscopy images of the
different Fe films are used to quantify the surface roughness. The observed
spin reorientations can be explained with the experimentally acquired roughness
parameters by taking into account the effect of roughness on both the magnetic
dipolar and the magnetocrystalline anisotropy.Comment: 4 pages with 3 EPS figure
GeneSrF and varSelRF: a web-based tool and R package for gene selection and classification using random forest
<p>Abstract</p> <p>Background</p> <p>Microarray data are often used for patient classification and gene selection. An appropriate tool for end users and biomedical researchers should combine user friendliness with statistical rigor, including carefully avoiding selection biases and allowing analysis of multiple solutions, together with access to additional functional information of selected genes. Methodologically, such a tool would be of greater use if it incorporates state-of-the-art computational approaches and makes source code available.</p> <p>Results</p> <p>We have developed GeneSrF, a web-based tool, and varSelRF, an R package, that implement, in the context of patient classification, a validated method for selecting very small sets of genes while preserving classification accuracy. Computation is parallelized, allowing to take advantage of multicore CPUs and clusters of workstations. Output includes bootstrapped estimates of prediction error rate, and assessments of the stability of the solutions. Clickable tables link to additional information for each gene (GO terms, PubMed citations, KEGG pathways), and output can be sent to PaLS for examination of PubMed references, GO terms, KEGG and and Reactome pathways characteristic of sets of genes selected for class prediction. The full source code is available, allowing to extend the software. The web-based application is available from <url>http://genesrf2.bioinfo.cnio.es</url>. All source code is available from Bioinformatics.org or The Launchpad. The R package is also available from CRAN.</p> <p>Conclusion</p> <p>varSelRF and GeneSrF implement a validated method for gene selection including bootstrap estimates of classification error rate. They are valuable tools for applied biomedical researchers, specially for exploratory work with microarray data. Because of the underlying technology used (combination of parallelization with web-based application) they are also of methodological interest to bioinformaticians and biostatisticians.</p
The fundamental constants and their variation: observational status and theoretical motivations
This article describes the various experimental bounds on the variation of
the fundamental constants of nature. After a discussion on the role of
fundamental constants, of their definition and link with metrology, the various
constraints on the variation of the fine structure constant, the gravitational,
weak and strong interactions couplings and the electron to proton mass ratio
are reviewed. This review aims (1) to provide the basics of each measurement,
(2) to show as clearly as possible why it constrains a given constant and (3)
to point out the underlying hypotheses. Such an investigation is of importance
to compare the different results, particularly in view of understanding the
recent claims of the detections of a variation of the fine structure constant
and of the electron to proton mass ratio in quasar absorption spectra. The
theoretical models leading to the prediction of such variation are also
reviewed, including Kaluza-Klein theories, string theories and other
alternative theories and cosmological implications of these results are
discussed. The links with the tests of general relativity are emphasized.Comment: 56 pages, l7 figures, submitted to Rev. Mod. Phy
Pharmacological evidence for the stimulation of NADPH oxidase by P2X7 receptors in mouse submandibular glands
ATP in the 100 μM-1 mM concentration range provoked a calcium-independent increase of the oxidation of dichlorodihydrofluorescein (DCFH) to dichlorofluorescein (DCF) by mouse submandibular cells. 3′-O-(4-benzoyl)benzoyl adenosine 5′-triphosphate (BzATP), a P2X7 agonist, but not a muscarinic or an adrenergic agonist, reproduced the effect of ATP. The inhibition of phospholipase C by U73122 or the potentiation of P2X4 receptor activation with ivermectin did not modify the response to ATP. ATP did not increase the oxidation of DCFH in cells isolated from submandibular glands of P2X7 knockout mice or in cells pretreated with a P2X7 antagonist. The inhibition of protein kinase C or of mitogen-activated protein kinase (MAP kinase) or of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase blocked the oxidation of DCFH without affecting the increase of the intracellular concentration of calcium or the uptake of ethidium bromide in response to extracellular ATP. From these results it is concluded that the activation of the P2X7 receptors from submandibular glands triggers an intracellular signalling cascade involving protein kinase C and MAP kinase leading to the stimulation of NADPH oxidase and the subsequent generation of reactive oxygen species
- …