15,415 research outputs found
The Children's Revised Impact of Event Scale (CRIES):Validity as a screening instrument for PTSD
The Children's Revised Impact of Event Scale (CRIES) is a brief child-friendly measure designed to screen children at risk for Posttraumatic Stress Disorder (PTSD). It has good face and construct validity, a stable factor structure, correlates well with other indices of distress, and has been used to screen very large samples of at-risk-children following a wide range of traumatic events. However, few studies have examined the scale's validity against a structured diagnostic interview based on the DSM-IV criteria for PTSD. In the present study, the CRIES and the PTSD section of the Anxiety Disorders Interview Schedule-Child and Parent Version (ADIS-CP) were administered to a sample of children and adolescents (n=63) recruited from hospital accident and emergency rooms and the validity of the CRIES as a screening tool evaluated. Cutoff scores were chosen from this sample with a low base-rate of PTSD (11.1%) to maximize sensitivity and minimize the likelihood that children with a diagnosis of PTSD would fail to be identified. Cutoff scores were then cross-validated in a sample of 52 clinically referred children who had a high base-rate of PTSD (67.3%). A cutoff score of 30 on the CRIES-13 and a cutoff score of 17 on the CRIES-8 maximized sensitivity and specificity, minimized the rate of false negatives, and correctly classified 75-83% of the children in the two samples. The CRIES-8 (which lacks any arousal items) worked as efficiently as the CRIES-13 (which includes arousal items) in correctly classifying children with and without PTSD. Results are discussed in light of the current literature and of the need for further development of effective screens for children at-risk of developing PTSD
Critical Rotation of an Annular Superfluid Bose Gas
We analyze the excitation spectrum of a superfluid Bose-Einstein condensate
rotating in a ring trap. We identify two important branches of the spectrum
related to outer and inner edge surface modes that lead to the instability of
the superfluid. Depending on the initial circulation of the annular condensate,
either the outer or the inner modes become first unstable. This instability is
crucially related to the superfluid nature of the rotating gas. In particular
we point out the existence of a maximal circulation above which the superflow
decays spontaneously, which cannot be explained by invoking the average speed
of sound.Comment: 5 pages, 5 figures, PRA Rapid Com
Whales, dolphins, and porpoises of the eastern North Pacific and adjacent Arctic waters: a guide to their identification
This is an identification guide for cetaceans (whales, dolphins, and porpoises), that was designed to assist laymen in identifying cetaceans encountered in eastern North Pacific and Arctic waters. It was intended for use by ongoing cetacean observer programs. This is a revision of an earlier guide with the same title published in 1972 by the Naval Undersa Center and the National Marine Fisheries Service. It includes sections on identifying cetaceans at sea as well as stranded animals on shore. Species accounts are divided by body size and presence or lack of a dorsal fin. Appendices include illustrations of tags on whales, dolphins, and porpoises, by Larry Hobbs; how to record data from observed cetaceans at sea and for stranded cetaceans; and a list of cetacean names in Japanese and Russian. (Document contains 245 pages - file takes considerable time to open
Internal knowledge transfer: professional development programmes and embedding real world learning for full-time undergraduates
Perrin, Hancock and Miller provide a discussion of the distinctive features of negotiated work-based learning frameworks that help capture and develop learning for part-time students who are professional practitioners. They demonstrate how approaches to teaching, learning and assessment established in these frameworks can also be leveraged for programmes aimed at full-time undergraduate students wishing to engage with âreal worldâ learning. In this way, full-time students are able to develop the type of professional practice outlooks and skills redolent of part-time students already in employment. The chapter includes two case studies of where this has occurred in UK universities and the methods that were used for this type of internal knowledge transfer
Diffraction of a Bose-Einstein Condensate in the Time Domain
We have observed the diffraction of a Bose-Einstein condensate of rubidium
atoms on a vibrating mirror potential. The matter wave packet bounces back at
normal incidence on a blue-detuned evanescent light field after a 3.6 mm free
fall. The mirror vibrates at a frequency of 500 kHz with an amplitude of 3.0
nm. The atomic carrier and sidebands are directly imaged during their ballistic
expansion. The locations and the relative weights of the diffracted atomic wave
packets are in very good agreement with the theoretical prediction of Carsten
Henkel et al. [1].Comment: submitted to Phys. Rev.
GRAVITY: The AO-Assisted, Two-Object Beam-Combiner Instrument
We present the proposal for the infrared adaptive optics (AO) assisted,
two-object, high-throughput, multiple-beam-combiner GRAVITY for the VLTI. This
instrument will be optimized for phase-referenced interferometric imaging and
narrow-angle astrometry of faint, red objects. Following the scientific
drivers, we analyze the VLTI infrastructure, and subsequently derive the
requirements and concept for the optimum instrument. The analysis can be
summarized with the need for highest sensitivity, phase referenced imaging and
astrometry of two objects in the VLTI beam, and infrared wavefront-sensing.
Consequently our proposed instrument allows the observations of faint, red
objects with its internal infrared wavefront sensor, pushes the optical
throughput by restricting observations to K-band at low and medium spectral
resolution, and is fully enclosed in a cryostat for optimum background
suppression and stability. Our instrument will thus increase the sensitivity of
the VLTI significantly beyond the present capabilities. With its two fibers per
telescope beam, GRAVITY will not only allow the simultaneous observations of
two objects, but will also push the astrometric accuracy for UTs to 10
micro-arcsec, and provide simultaneous astrometry for up to six baselines.Comment: 12 pages, to be published in the Proceedings of the ESO Workshop on
"The Power of Optical/IR Interferometry: Recent Scientific Results and 2nd
Generation VLTI Instrumentation", eds. F. Paresce, A. Richichi, A. Chelli and
F. Delplancke, held in Garching, Germany, 4-8 April 200
The unreasonable effectiveness of equilibrium-like theory for interpreting non-equilibrium experiments
There has been great interest in applying the results of statistical
mechanics to single molecule experiements. Recent work has highlighted
so-called non-equilibrium work-energy relations and Fluctuation Theorems which
take on an equilibrium-like (time independent) form. Here I give a very simple
heuristic example where an equilibrium result (the barometric law for colloidal
particles) arises from theory describing the {\em thermodynamically}
non-equilibrium phenomenon of a single colloidal particle falling through
solution due to gravity. This simple result arises from the fact that the
particle, even while falling, is in {\em mechanical} equilibrium (gravitational
force equal the viscous drag force) at every instant. The results are
generalized by appeal to the central limit theorem. The resulting time
independent equations that hold for thermodynamically non-equilibrium (and even
non-stationary) processes offer great possibilities for rapid determination of
thermodynamic parameters from single molecule experiments.Comment: 6 page
Hanbury Brown Twiss effect for ultracold quantum gases
We have studied 2-body correlations of atoms in an expanding cloud above and
below the Bose-Einstein condensation threshold. The observed correlation
function for a thermal cloud shows a bunching behavior, while the correlation
is flat for a coherent sample. These quantum correlations are the atomic
analogue of the Hanbury Brown Twiss effect. We observe the effect in three
dimensions and study its dependence on cloud size.Comment: Figure 1 availabl
- âŠ