2,111 research outputs found

    PDFs, αs\alpha_s, and quark masses from global fits

    Full text link
    The strong coupling constant αs\alpha_s and the heavy-quark masses, mcm_c, mbm_b, mtm_t are extracted simultaneosly with the parton distribution functions (PDFs) in the updated ABM12 fit including recent data from CERN-SPS, HERA, Tevatron, and the LHC. The values of \begin{eqnarray} \nonumber \alpha_s(M_Z)&=&0.1147\pm0.0008~({\rm exp.)},\\ \nonumber m_c(m_c)&=&1.252\pm 0.018~({\rm exp.})~{\rm GeV},\\ \nonumber m_b(m_b)&=&3.83\pm0.12~({\rm exp.})~{\rm GeV},\\ \nonumber m_t(m_t)&=&160.9\pm1.1~({\rm exp.})~{\rm GeV} \end{eqnarray} are obtained with the MS‟\overline{MS} heavy-quark mass definition being employed throughout the analysis.Comment: 7 pages, 4 figures; preprint number correcte

    Iso-spin asymmetry of quark distributions and implications for single top-quark production at the LHC

    Full text link
    We present an improved determination of the up- and down-quark distributions in the proton using recent data on charged lepton asymmetries from W±W^\pm gauge-boson production at the LHC and Tevatron. The analysis is performed in the framework of a global fit of parton distribution functions. The fit results are consistent with a non-zero iso-spin asymmetry of the sea, x(dˉ−uˉ)x(\bar d - \bar u), at small values of Bjorken x∌10−4x\sim 10^{-4} indicating a delayed onset of the Regge asymptotics of a vanishing (dˉ−uˉ)(\bar d - \bar u)-asymmetry at small-xx. We compare with up- and down-quark distributions available in the literature and provide accurate predictions for the production of single top-quarks at the LHC, a process which can serve as a standard candle for the light quark flavor content of the proton.Comment: 21 pages, 13 figure

    Determination of Strange Sea Quark Distributions from Fixed-target and Collider Data

    Full text link
    We present an improved determination of the strange sea distribution in the nucleon with constraints coming from the recent charm production data in neutrino-nucleon deep-inelastic scattering by the NOMAD and CHORUS experiments and from charged current inclusive deep-inelastic scattering at HERA. We demonstrate that the results are consistent with the data from the ATLAS and the CMS experiments on the associated production of W±W^\pm-bosons with cc-quarks. We also discuss issues related to the recent strange sea determination by the ATLAS experiment using LHC collider data.Comment: 23 pages, 14 figure

    Prompt neutrino fluxes in the atmosphere with PROSA parton distribution functions

    Full text link
    Effects on atmospheric prompt neutrino fluxes of present uncertainties affecting the nucleon composition are studied by using the PROSA fit to parton distribution functions (PDFs). The PROSA fit extends the precision of the PDFs to low x, which is the kinematic region of relevance for high-energy neutrino production, by taking into account LHCb data on charm and bottom hadroproduction. In the range of neutrino energies explored by present Very Large Volume Neutrino Telescopes, it is found that PDF uncertainties are far smaller with respect to those due to renormalization and factorization scale variation and to assumptions on the cosmic ray composition, which at present dominate and limit our knowledge of prompt neutrino fluxes. A discussion is presented on how these uncertainties affect the expected number of atmospheric prompt neutrino events in the analysis of high-energy events characterized by interaction vertices fully contained within the instrumented volume of the detector, performed by the IceCube collaboration.Comment: 36 pages, 17 figures, 1 tabl

    A Critical Appraisal and Evaluation of Modern PDFs

    Get PDF
    We review the present status of the determination of parton distribution functions (PDFs) in the light of the precision requirements for the LHC in Run 2 and other future hadron colliders. We provide brief reviews of all currently available PDF sets and use them to compute cross sections for a number of benchmark processes, including Higgs boson production in gluon-gluon fusion at the LHC. We show that the differences in the predictions obtained with the various PDFs are due to particular theory assumptions made in the fits of those PDFs. We discuss PDF uncertainties in the kinematic region covered by the LHC and on averaging procedures for PDFs, such as advocated by the PDF4LHC15 sets, and provide recommendations for the usage of PDF sets for theory predictions at the LHC.Comment: 70 pages pdflatex, 19 figures, 17 tables; final versio

    Fast shower simulation in the ATLAS calorimeter

    Get PDF
    The time to simulate pp collisions in the ATLAS detector is largely dominated by the showering of electromagnetic particles in the heavy parts of the detector, especially the electromagnetic barrel and endcap calorimeters. Two procedures have been developed to accelerate the processing time of electromagnetic particles in these regions: (1) a fast shower parameterisation and (2) a frozen shower library. Both work by generating the response of the calorimeter to electrons and positrons with Geant 4, and then reintroduce the response into the simulation at runtime. In the fast shower parameterisation technique, a parameterisation is tuned to single electrons and used later by simulation. In the frozen shower technique, actual showers from low-energy particles are used in the simulation. Full Geant 4 simulation is used to develop showers down to ~1 GeV, at which point the shower is terminated by substituting a frozen shower. Judicious use of both techniques over the entire electromagnetic portion of the ATLAS calorimeter produces an important improvement of CPU time. We discuss the algorithms and their performance in this paper

    Parton distribution functions, alpha(s), and heavy-quark masses for LHC Run II

    Get PDF
    We determine a new set of parton distribution functions (ABMP16), the strong coupling constant αs\alpha_s and the quark masses mcm_c, mbm_b and mtm_t in a global fit to next-to-next-to-leading order (NNLO) in QCD. The analysis uses the MS‟\overline{\mathrm{MS}} scheme for αs\alpha_s and all quark masses and is performed in the fixed-flavor number scheme for nf=3,4,5n_f=3, 4, 5. Essential new elements of the fit are the combined data from HERA for inclusive deep-inelastic scattering (DIS), data from the fixed-target experiments NOMAD and CHORUS for neutrino-induced DIS, and data from Tevatron and the LHC for the Drell-Yan process and the hadro-production of single-top and top-quark pairs. The theory predictions include new improved approximations at NNLO for the production of heavy quarks in DIS and for the hadro-production of single-top quarks. The description of higher twist effects relevant beyond the leading twist collinear factorization approximation is refined. At NNLO we obtain the value αs(nf=5)(MZ)=0.1147±0.0008\alpha_s^{(n_f=5)}(M_Z) = 0.1147 \pm 0.0008.Comment: 70 pages pdflatex, 34 figures, 15 table

    The photon PDF from high-mass Drell Yan data at the LHC

    Get PDF
    Achieving the highest precision for theoretical predictions at the LHC requires the calculation of hard-scattering cross-sections that include perturbative QCD corrections up to (N)NNLO and electroweak (EW) corrections up to NLO. Parton distribution functions (PDFs) need to be provided with matching accuracy, which in the case of QED effects involves introducing the photon parton distribution of the proton, xÎł(x,Q2)x\gamma(x,Q^2). In this work a determination of the photon PDF from fits to recent ATLAS measurements of high-mass Drell-Yan dilepton production at s=8\sqrt{s}=8 TeV is presented. This analysis is based on the xFitter framework, and has required improvements both in the APFEL program, to account for NLO QED effects, and in the aMCfast interface to account for the photon-initiated contributions in the EW calculations within MadGraph5_aMC@NLO. The results are compared with other recent QED fits and determinations of the photon PDF, consistent results are found

    The Geant4-Based ATLAS Fast Electromagnetic Shower Simulation

    Get PDF
    We present a three-pronged approach to fast electromagnetic shower simulation in ATLAS. Parameterisation is used for high-energy, shower libraries for medium-energy, and an averaged energy deposition for very low-energy particles. We present a comparison between the fast simulation and full simulation in an ATLAS Monte Carlo production
    • 

    corecore