4 research outputs found
Law of Genome Evolution Direction : Coding Information Quantity Grows
The problem of the directionality of genome evolution is studied. Based on
the analysis of C-value paradox and the evolution of genome size we propose
that the function-coding information quantity of a genome always grows in the
course of evolution through sequence duplication, expansion of code, and gene
transfer from outside. The function-coding information quantity of a genome
consists of two parts, p-coding information quantity which encodes functional
protein and n-coding information quantity which encodes other functional
elements except amino acid sequence. The evidences on the evolutionary law
about the function-coding information quantity are listed. The needs of
function is the motive force for the expansion of coding information quantity
and the information quantity expansion is the way to make functional innovation
and extension for a species. So, the increase of coding information quantity of
a genome is a measure of the acquired new function and it determines the
directionality of genome evolution.Comment: 16 page
The delayed rise of present-day mammals
Did the end-Cretaceous mass extinction event, by eliminating non-avian dinosaurs and most of the existing fauna, trigger the evolutionary radiation of present-day mammals? Here we construct, date and analyse a species-level phylogeny of nearly all extan