587 research outputs found

    DETRITAL ZIRCON AGES AND SOURCES OF MATERIAL FOR THE LOWER CAMBRIAN DEPOSITS OF THE MEL'GIN TROUGH OF THE BUREYA CONTINENTAL MASSIF

    Get PDF
    Bureya continental massif is one of the largest continental massifs in the eastern part of the Central Asian orogenic belt (CAOB) (Fig. 1), and knowledge of its geological structure is of fundamental importance in understanding the history of its formation.Bureya continental massif is one of the largest continental massifs in the eastern part of the Central Asian orogenic belt (CAOB) (Fig. 1), and knowledge of its geological structure is of fundamental importance in understanding the history of its formation

    Influence of spin structures and nesting on Fermi surface and a pseudogap anisotropy in t-t'-U Hubbard model

    Full text link
    Influence of two type of spin structures on the form of the Fermi surface (FS) and a photoemission intensity map is studied for t-t'-U Hubbard model. Mean field calculations are done for the stripe phase and for the spiral spin structure. It is shown, that unlike a case of electron doping, the hole-doped models are unstable with respect to formation of such structures. The pseudogap anisotropies are different for h- and e- doping. In accordance with ARPES data for La2SrxCuO4 the stripe phase is characterized by quasi-one-dimensional segments of FS at k=(\pi,0) and by suppression of spectral weight in diagonal direction. It is shown that spiral structures display the polarisation anisotropy: different segments of FS correspond to electros with different spin polarisations.Comment: 12 pages, 4 figure

    Quasiparticle states of the Hubbard model near the Fermi level

    Full text link
    The spectra of the t-U and t-t'-U Hubbard models are investigated in the one-loop approximation for different values of the electron filling. It is shown that the four-band structure which is inherent in the case of half-filling and low temperatures persists also for some excess or deficiency of electrons. Besides, with some departure from half-filling an additional narrow band of quasiparticle states arises near the Fermi level. The dispersion of the band, its bandwidth and the variation with filling are close to those of the spin-polaron band of the t-J model. For moderate doping spectral intensities in the new band and in one of the inner bands of the four-band structure decrease as the Fermi level is approached which leads to the appearance of a pseudogap in the spectrum.Comment: 8 pages, 7 figure

    Collapse of an Instanton

    Full text link
    We construct a two parameter family of collapsing solutions to the 4+1 Yang-Mills equations and derive the dynamical law of the collapse. Our arguments indicate that this family of solutions is stable. The latter fact is also supported by numerical simulations.Comment: 17 pages, 1 figur

    Itinerant in-plane magnetic fluctuations and many-body correlations in Nax_xCoO2_2

    Full text link
    Based on the {\it ab-initio} band structure for Nax_xCoO2_2 we derive the single-electron energies and the effective tight-binding description for the t2gt_{2g} bands using projection procedure. Due to the presence of the next-nearest-neighbor hoppings a local minimum in the electronic dispersion close to the Γ\Gamma point of the first Brillouin zone forms. Correspondingly, in addition to a large Fermi surface an electron pocket close to the Γ\Gamma point emerges at high doping concentrations. The latter yields the new scattering channel resulting in a peak structure of the itinerant magnetic susceptibility at small momenta. This indicates dominant itinerant in-plane ferromagnetic fluctuations above certain critical concentration xmx_m, in agreement with neutron scattering data. Below xmx_m the magnetic susceptibility shows a tendency towards the antiferromagnetic fluctuations. We further analyze the many-body effects on the electronic and magnetic excitations using various approximations applicable for different U/tU/t ratio.Comment: 10 page

    Electronic theory for itinerant in-plane magnetic fluctuations in Nax_xCoO2_2

    Full text link
    Starting from {\it ab-initio} band structure for Nax_xCoO2_2, we derive the single-electron energies and the effective tight-binding description for the t2gt_{2g} bands using a projection procedure. We find that due to the presence of the next-nearest-neighbor hoppings a local minimum in the electronic dispersion close to the Γ\Gamma point of the first Brillouin zone forms. Therefore, in addition to a large Fermi surface an electron pocket close to the Γ\Gamma point emerges at high doping concentrations. The latter yields the new scattering channel resulting in a peak structure of the itinerant magnetic susceptibility at small momenta. This indicates itinerant in-plane ferromagnetic state above certain critical concentration xmx_m, in agreement with neutron scattering data. Below xmx_m the magnetic susceptibility shows a tendency towards the antiferromagnetic fluctuations. We estimate the value of 0.58<xm<0.70.58 < x_m < 0.7 within the rigid band model and within the Hubbard model with infinite on-site Coulomb repulsion consistent with the experimental phase diagram.Comment: 4 pages, 4 figures; LDA calculations were done with Na in the symmetric 2d position contrary to the 6h position in a previous version of this pape

    Topological phase separation in 2D hard-core Bose-Hubbard system away from half-filling

    Full text link
    We suppose that the doping of the 2D hard-core boson system away from half-filling may result in the formation of multi-center topological defect such as charge order (CO) bubble domain(s) with Bose superfluid (BS) and extra bosons both localized in domain wall(s), or a {\it topological} CO+BS {\it phase separation}, rather than an uniform mixed CO+BS supersolid phase. Starting from the classical model we predict the properties of the respective quantum system. The long-wavelength behavior of the system is believed to remind that of granular superconductors, CDW materials, Wigner crystals, and multi-skyrmion system akin in a quantum Hall ferromagnetic state of a 2D electron gas.Comment: 6 pages, 1 figur

    A DMRG Study of Low-Energy Excitations and Low-Temperature Properties of Alternating Spin Systems

    Full text link
    We use the density matrix renormalization group (DMRG) method to study the ground and low-lying excited states of three kinds of uniform and dimerized alternating spin chains. The DMRG procedure is also employed to obtain low-temperature thermodynamic properties of these systems. We consider a 2N site system with spins s1s_1 and s2s_2 alternating from site to site and interacting via a Heisenberg antiferromagnetic exchange. The three systems studied correspond to (s1,s2)(s_1 ,s_2 ) being equal to (1,1/2),(3/2,1/2)(1,1/2),(3/2,1/2) and (3/2,1)(3/2,1); all of them have very similar properties. The ground state is found to be ferrimagnetic with total spin sG=N(s1s2)s_G =N(s_1 - s_2). We find that there is a gapless excitation to a state with spin sG1s_G -1, and a gapped excitation to a state with spin sG+1s_G +1. Surprisingly, the correlation length in the ground state is found to be very small for this gapless system. The DMRG analysis shows that the chain is susceptible to a conditional spin-Peierls instability. Furthermore, our studies of the magnetization, magnetic susceptibility χ\chi and specific heat show strong magnetic-field dependences. The product χT\chi T shows a minimum as a function of temperature T at low magnetic fields; the minimum vanishes at high magnetic fields. This low-field behavior is in agreement with earlier experimental observations. The specific heat shows a maximum as a function of temperature, and the height of the maximum increases sharply at high magnetic fields. Although all the three systems show qualitatively similar behavior, there are some notable quantitative differences between the systems in which the site spin difference, s1s2|s_1 - s_2|, is large and small respectively.Comment: 16 LaTeX pages, 13 postscript figure

    q-breathers in Discrete Nonlinear Schroedinger lattices

    Full text link
    qq-breathers are exact time-periodic solutions of extended nonlinear systems continued from the normal modes of the corresponding linearized system. They are localized in the space of normal modes. The existence of these solutions in a weakly anharmonic atomic chain explained essential features of the Fermi-Pasta-Ulam (FPU) paradox. We study qq-breathers in one- two- and three-dimensional discrete nonlinear Sch\"{o}dinger (DNLS) lattices -- theoretical playgrounds for light propagation in nonlinear optical waveguide networks, and the dynamics of cold atoms in optical lattices. We prove the existence of these solutions for weak nonlinearity. We find that the localization of qq-breathers is controlled by a single parameter which depends on the norm density, nonlinearity strength and seed wave vector. At a critical value of that parameter qq-breathers delocalize via resonances, signaling a breakdown of the normal mode picture and a transition into strong mode-mode interaction regime. In particular this breakdown takes place at one of the edges of the normal mode spectrum, and in a singular way also in the center of that spectrum. A stability analysis of qq-breathers supplements these findings. For three-dimensional lattices, we find qq-breather vortices, which violate time reversal symmetry and generate a vortex ring flow of energy in normal mode space.Comment: 19 pages, 9 figure

    Stepwise quantum decay of self-localized solitons

    Full text link
    The two-phonon decay of self-localized soliton in a one-dimensional monatomic anharmonic lattice caused by cubic anharmonicity is considered. It is shown that the decay takes place with emission of phonon bursts. The average rate of emission of phonons is of the order of vibrational quantum per vibrational period. Characteristic time of the relaxation is determined by the quantum anharmonicity parameter; this time may vary from a few (quantum lattices, large anharmonicity) to thousands (ordinary lattices, small anharmonicity) of vibrational periods.Comment: 6 pages, 3 figure
    corecore