62 research outputs found

    Modified Paouris inequality

    Full text link
    The Paouris inequality gives the large deviation estimate for Euclidean norms of log-concave vectors. We present a modified version of it and show how the new inequality may be applied to derive tail estimates of l_r-norms and suprema of norms of coordinate projections of isotropic log-concave vectors.Comment: 14 page

    Moments of unconditional logarithmically concave vectors

    Full text link
    We derive two-sided bounds for moments of linear combinations of coordinates od unconditional log-concave vectors. We also investigate how well moments of such combinations may be approximated by moments of Gaussian random variables.Comment: 14 page

    The LIL for UU-statistics in Hilbert spaces

    Full text link
    We give necessary and sufficient conditions for the (bounded) law of the iterated logarithm for UU-statistics in Hilbert spaces. As a tool we also develop moment and tail estimates for canonical Hilbert-space valued UU-statistics of arbitrary order, which are of independent interest

    Exponential and moment inequalities for U-statistics

    Full text link
    A Bernstein-type exponential inequality for (generalized) canonical U-statistics of order 2 is obtained and the Rosenthal and Hoffmann-J{\o}rgensen inequalities for sums of independent random variables are extended to (generalized) U-statistics of any order whose kernels are either nonnegative or canonicalComment: 22 page

    Convex recovery of a structured signal from independent random linear measurements

    Get PDF
    This chapter develops a theoretical analysis of the convex programming method for recovering a structured signal from independent random linear measurements. This technique delivers bounds for the sampling complexity that are similar with recent results for standard Gaussian measurements, but the argument applies to a much wider class of measurement ensembles. To demonstrate the power of this approach, the paper presents a short analysis of phase retrieval by trace-norm minimization. The key technical tool is a framework, due to Mendelson and coauthors, for bounding a nonnegative empirical process.Comment: 18 pages, 1 figure. To appear in "Sampling Theory, a Renaissance." v2: minor corrections. v3: updated citations and increased emphasis on Mendelson's contribution

    Remarks on the KLS conjecture and Hardy-type inequalities

    Full text link
    We generalize the classical Hardy and Faber-Krahn inequalities to arbitrary functions on a convex body ΩRn\Omega \subset \mathbb{R}^n, not necessarily vanishing on the boundary Ω\partial \Omega. This reduces the study of the Neumann Poincar\'e constant on Ω\Omega to that of the cone and Lebesgue measures on Ω\partial \Omega; these may be bounded via the curvature of Ω\partial \Omega. A second reduction is obtained to the class of harmonic functions on Ω\Omega. We also study the relation between the Poincar\'e constant of a log-concave measure μ\mu and its associated K. Ball body KμK_\mu. In particular, we obtain a simple proof of a conjecture of Kannan--Lov\'asz--Simonovits for unit-balls of pn\ell^n_p, originally due to Sodin and Lata{\l}a--Wojtaszczyk.Comment: 18 pages. Numbering of propositions, theorems, etc.. as appeared in final form in GAFA seminar note

    Explicit lower and upper bounds on the entangled value of multiplayer XOR games

    Get PDF
    XOR games are the simplest model in which the nonlocal properties of entanglement manifest themselves. When there are two players, it is well known that the bias --- the maximum advantage over random play --- of entangled players can be at most a constant times greater than that of classical players. Recently, P\'{e}rez-Garc\'{i}a et al. [Comm. Math. Phys. 279 (2), 2008] showed that no such bound holds when there are three or more players: the advantage of entangled players over classical players can become unbounded, and scale with the number of questions in the game. Their proof relies on non-trivial results from operator space theory, and gives a non-explicit existence proof, leading to a game with a very large number of questions and only a loose control over the local dimension of the players' shared entanglement. We give a new, simple and explicit (though still probabilistic) construction of a family of three-player XOR games which achieve a large quantum-classical gap (QC-gap). This QC-gap is exponentially larger than the one given by P\'{e}rez-Garc\'{i}a et. al. in terms of the size of the game, achieving a QC-gap of order N\sqrt{N} with N2N^2 questions per player. In terms of the dimension of the entangled state required, we achieve the same (optimal) QC-gap of N\sqrt{N} for a state of local dimension NN per player. Moreover, the optimal entangled strategy is very simple, involving observables defined by tensor products of the Pauli matrices. Additionally, we give the first upper bound on the maximal QC-gap in terms of the number of questions per player, showing that our construction is only quadratically off in that respect. Our results rely on probabilistic estimates on the norm of random matrices and higher-order tensors which may be of independent interest.Comment: Major improvements in presentation; results identica

    Transference Principles for Log-Sobolev and Spectral-Gap with Applications to Conservative Spin Systems

    Full text link
    We obtain new principles for transferring log-Sobolev and Spectral-Gap inequalities from a source metric-measure space to a target one, when the curvature of the target space is bounded from below. As our main application, we obtain explicit estimates for the log-Sobolev and Spectral-Gap constants of various conservative spin system models, consisting of non-interacting and weakly-interacting particles, constrained to conserve the mean-spin. When the self-interaction is a perturbation of a strongly convex potential, this partially recovers and partially extends previous results of Caputo, Chafa\"{\i}, Grunewald, Landim, Lu, Menz, Otto, Panizo, Villani, Westdickenberg and Yau. When the self-interaction is only assumed to be (non-strongly) convex, as in the case of the two-sided exponential measure, we obtain sharp estimates on the system's spectral-gap as a function of the mean-spin, independently of the size of the system.Comment: 57 page
    corecore