1,046 research outputs found

    Study on the neuronal circuits implicated in postural tremor and hypokinesia

    Get PDF
    The effect of various tegmentary lesions at the level of the pontomesenchphalon in monkeys on motor function was observed. The importance of the monoaminergic mechanisms of the brainstem is discussed. The results also show the importance of the descending tegmentary rubral system and the rubroolivocerebellar circuit in controlling peripheral motor activity. The destruction of the sensory motor cortex proves to be a more effective way of eliminating spontaneous or harmaline induced tremor than the complete interruption of the pyramidal system on the level of the cerebral peduncle

    Byzantine Stochastic Gradient Descent

    Full text link
    This paper studies the problem of distributed stochastic optimization in an adversarial setting where, out of the mm machines which allegedly compute stochastic gradients every iteration, an α\alpha-fraction are Byzantine, and can behave arbitrarily and adversarially. Our main result is a variant of stochastic gradient descent (SGD) which finds ε\varepsilon-approximate minimizers of convex functions in T=O~(1ε2m+α2ε2)T = \tilde{O}\big( \frac{1}{\varepsilon^2 m} + \frac{\alpha^2}{\varepsilon^2} \big) iterations. In contrast, traditional mini-batch SGD needs T=O(1ε2m)T = O\big( \frac{1}{\varepsilon^2 m} \big) iterations, but cannot tolerate Byzantine failures. Further, we provide a lower bound showing that, up to logarithmic factors, our algorithm is information-theoretically optimal both in terms of sampling complexity and time complexity

    A Quasi-Classical Model of Intermediate Velocity Particle Production in Asymmetric Heavy Ion Reactions

    Full text link
    The particle emission at intermediate velocities in mass asymmetric reactions is studied within the framework of classical molecular dynamics. Two reactions in the Fermi energy domain were modelized, 58^{58}Ni+C and 58^{58}Ni+Au at 34.5 MeV/nucleon. The availability of microscopic correlations at all times allowed a detailed study of the fragment formation process. Special attention was paid to the physical origin of fragments and emission timescales, which allowed us to disentangle the different processes involved in the mid-rapidity particle production. Consequently, a clear distinction between a prompt pre- equilibrium emission and a delayed aligned asymmetric breakup of the heavier partner of the reaction was achieved.Comment: 8 pages, 7 figures. Final version: figures were redesigned, and a new section discussing the role of Coulomb in IMF production was include

    Analysis of charged particle emission sources and coalescence in E/A = 61 MeV 36^{36}Ar + 27^{27}Al, 112^{112}Sn and 124^{124}Sn collisions

    Full text link
    Single-particle kinetic energy spectra and two-particle small angle correlations of protons (pp), deuterons (dd) and tritons (tt) have been measured simultaneously in 61A MeV 36^{36}Ar + 27^{27}Al, 112^{112}Sn and 124^{124}Sn collisions. Characteristics of the emission sources have been derived from a ``source identification plot'' (βsource\beta_{source}--ECME_{CM} plot), constructed from the single-particle invariant spectra, and compared to the complementary results from two-particle correlation functions. Furthermore, the source identification plot has been used to determine the conditions when the coalescence mechanism can be applied for composite particles. In our data, this is the case only for the Ar + Al reaction, where pp, dd and tt are found to originate from a common source of emission (from the overlap region between target and projectile). In this case, the coalescence model parameter, p~0\tilde{p}_0 -- the radius of the complex particle emission source in momentum space, has been analyzed.Comment: 20 pages, 5 figures, submitted to Nuclear Physics

    Signal Intensity Analysis and Optimization for in Vivo Imaging of Cherenkov and Excited Luminescence.

    Get PDF
    During external beam radiotherapy (EBRT), in vivo Cherenkov optical emissions can be used as a dosimetry tool or to excite luminescence, termed Cherenkov-excited luminescence (CEL) with microsecond-level time-gated cameras. The goal of this work was to develop a complete theoretical foundation for the detectable signal strength, in order to provide guidance on optimization of the limits of detection and how to optimize near real time imaging. The key parameters affecting photon production, propagation and detection were considered and experimental validation with both tissue phantoms and a murine model are shown. Both the theoretical analysis and experimental data indicate that the detection level is near a single photon-per-pixel for the detection geometry and frame rates commonly used, with the strongest factor being the signal decrease with the square of distance from tissue to camera. Experimental data demonstrates how the SNR improves with increasing integration time, but only up to the point where the dominance of camera read noise is overcome by stray photon noise that cannot be suppressed. For the current camera in a fixed geometry, the signal to background ratio limits the detection of light signals, and the observed in vivo Cherenkov emission is on the order of 100×  stronger than CEL signals. As a result, imaging signals from depths  \u3c 15 mm is reasonable for Cherenkov light, and depths  \u3c 3 mm is reasonable for CEL imaging. The current investigation modeled Cherenkov and CEL imaging of two oxygen sensing phosphorescent compounds, but the modularity of the code allows for easy comparison of different agents or alternative cameras, geometries or tissues

    Zero-Shot Hashing via Transferring Supervised Knowledge

    Full text link
    Hashing has shown its efficiency and effectiveness in facilitating large-scale multimedia applications. Supervised knowledge e.g. semantic labels or pair-wise relationship) associated to data is capable of significantly improving the quality of hash codes and hash functions. However, confronted with the rapid growth of newly-emerging concepts and multimedia data on the Web, existing supervised hashing approaches may easily suffer from the scarcity and validity of supervised information due to the expensive cost of manual labelling. In this paper, we propose a novel hashing scheme, termed \emph{zero-shot hashing} (ZSH), which compresses images of "unseen" categories to binary codes with hash functions learned from limited training data of "seen" categories. Specifically, we project independent data labels i.e. 0/1-form label vectors) into semantic embedding space, where semantic relationships among all the labels can be precisely characterized and thus seen supervised knowledge can be transferred to unseen classes. Moreover, in order to cope with the semantic shift problem, we rotate the embedded space to more suitably align the embedded semantics with the low-level visual feature space, thereby alleviating the influence of semantic gap. In the meantime, to exert positive effects on learning high-quality hash functions, we further propose to preserve local structural property and discrete nature in binary codes. Besides, we develop an efficient alternating algorithm to solve the ZSH model. Extensive experiments conducted on various real-life datasets show the superior zero-shot image retrieval performance of ZSH as compared to several state-of-the-art hashing methods.Comment: 11 page

    Interplay of initial deformation and Coulomb proximity on nuclear decay

    Full text link
    Alpha particles emitted from an excited projectile-like fragment (PLF*) formed in a peripheral collision of two intermediate-energy heavy ions exhibit a strong preference for emission towards the target-like fragment (TLF). The interplay of the initial deformation of the PLF* caused by the reaction, Coulomb proximity, and the rotation of the PLF* results in the observed anisotropic angular distribution. Changes in the shape of the angular distribution with excitation energy are interpreted as being the result of forming more elongated initial geometries in the more peripheral collisions.Comment: 4 figure
    corecore