1,046 research outputs found
Study on the neuronal circuits implicated in postural tremor and hypokinesia
The effect of various tegmentary lesions at the level of the pontomesenchphalon in monkeys on motor function was observed. The importance of the monoaminergic mechanisms of the brainstem is discussed. The results also show the importance of the descending tegmentary rubral system and the rubroolivocerebellar circuit in controlling peripheral motor activity. The destruction of the sensory motor cortex proves to be a more effective way of eliminating spontaneous or harmaline induced tremor than the complete interruption of the pyramidal system on the level of the cerebral peduncle
Byzantine Stochastic Gradient Descent
This paper studies the problem of distributed stochastic optimization in an
adversarial setting where, out of the machines which allegedly compute
stochastic gradients every iteration, an -fraction are Byzantine, and
can behave arbitrarily and adversarially. Our main result is a variant of
stochastic gradient descent (SGD) which finds -approximate
minimizers of convex functions in iterations. In contrast, traditional
mini-batch SGD needs iterations,
but cannot tolerate Byzantine failures. Further, we provide a lower bound
showing that, up to logarithmic factors, our algorithm is
information-theoretically optimal both in terms of sampling complexity and time
complexity
A Quasi-Classical Model of Intermediate Velocity Particle Production in Asymmetric Heavy Ion Reactions
The particle emission at intermediate velocities in mass asymmetric reactions
is studied within the framework of classical molecular dynamics. Two reactions
in the Fermi energy domain were modelized, Ni+C and Ni+Au at 34.5
MeV/nucleon. The availability of microscopic correlations at all times allowed
a detailed study of the fragment formation process. Special attention was paid
to the physical origin of fragments and emission timescales, which allowed us
to disentangle the different processes involved in the mid-rapidity particle
production. Consequently, a clear distinction between a prompt pre- equilibrium
emission and a delayed aligned asymmetric breakup of the heavier partner of the
reaction was achieved.Comment: 8 pages, 7 figures. Final version: figures were redesigned, and a new
section discussing the role of Coulomb in IMF production was include
Analysis of charged particle emission sources and coalescence in E/A = 61 MeV Ar + Al, Sn and Sn collisions
Single-particle kinetic energy spectra and two-particle small angle
correlations of protons (), deuterons () and tritons () have been
measured simultaneously in 61A MeV Ar + Al, Sn and
Sn collisions. Characteristics of the emission sources have been
derived from a ``source identification plot'' (--
plot), constructed from the single-particle invariant spectra, and compared to
the complementary results from two-particle correlation functions. Furthermore,
the source identification plot has been used to determine the conditions when
the coalescence mechanism can be applied for composite particles. In our data,
this is the case only for the Ar + Al reaction, where , and are
found to originate from a common source of emission (from the overlap region
between target and projectile). In this case, the coalescence model parameter,
-- the radius of the complex particle emission source in momentum
space, has been analyzed.Comment: 20 pages, 5 figures, submitted to Nuclear Physics
Signal Intensity Analysis and Optimization for in Vivo Imaging of Cherenkov and Excited Luminescence.
During external beam radiotherapy (EBRT), in vivo Cherenkov optical emissions can be used as a dosimetry tool or to excite luminescence, termed Cherenkov-excited luminescence (CEL) with microsecond-level time-gated cameras. The goal of this work was to develop a complete theoretical foundation for the detectable signal strength, in order to provide guidance on optimization of the limits of detection and how to optimize near real time imaging. The key parameters affecting photon production, propagation and detection were considered and experimental validation with both tissue phantoms and a murine model are shown. Both the theoretical analysis and experimental data indicate that the detection level is near a single photon-per-pixel for the detection geometry and frame rates commonly used, with the strongest factor being the signal decrease with the square of distance from tissue to camera. Experimental data demonstrates how the SNR improves with increasing integration time, but only up to the point where the dominance of camera read noise is overcome by stray photon noise that cannot be suppressed. For the current camera in a fixed geometry, the signal to background ratio limits the detection of light signals, and the observed in vivo Cherenkov emission is on the order of 100× stronger than CEL signals. As a result, imaging signals from depths \u3c 15 mm is reasonable for Cherenkov light, and depths \u3c 3 mm is reasonable for CEL imaging. The current investigation modeled Cherenkov and CEL imaging of two oxygen sensing phosphorescent compounds, but the modularity of the code allows for easy comparison of different agents or alternative cameras, geometries or tissues
Zero-Shot Hashing via Transferring Supervised Knowledge
Hashing has shown its efficiency and effectiveness in facilitating
large-scale multimedia applications. Supervised knowledge e.g. semantic labels
or pair-wise relationship) associated to data is capable of significantly
improving the quality of hash codes and hash functions. However, confronted
with the rapid growth of newly-emerging concepts and multimedia data on the
Web, existing supervised hashing approaches may easily suffer from the scarcity
and validity of supervised information due to the expensive cost of manual
labelling. In this paper, we propose a novel hashing scheme, termed
\emph{zero-shot hashing} (ZSH), which compresses images of "unseen" categories
to binary codes with hash functions learned from limited training data of
"seen" categories. Specifically, we project independent data labels i.e.
0/1-form label vectors) into semantic embedding space, where semantic
relationships among all the labels can be precisely characterized and thus seen
supervised knowledge can be transferred to unseen classes. Moreover, in order
to cope with the semantic shift problem, we rotate the embedded space to more
suitably align the embedded semantics with the low-level visual feature space,
thereby alleviating the influence of semantic gap. In the meantime, to exert
positive effects on learning high-quality hash functions, we further propose to
preserve local structural property and discrete nature in binary codes.
Besides, we develop an efficient alternating algorithm to solve the ZSH model.
Extensive experiments conducted on various real-life datasets show the superior
zero-shot image retrieval performance of ZSH as compared to several
state-of-the-art hashing methods.Comment: 11 page
Recommended from our members
Responding to Climate Change: The Economy and Economics - Part of the Problem and Solution
The Climate Change Starter’s Guide provides an introduction and overview for education planners and practitioners on the wide range of issues relating to climate change and climate change education, including causes, impacts, mitigation and adaptation strategies, as well as some broad political and economic principles.
The aim of this guide is to serve as a starting point for mainstreaming climate change education into school curricula. It has been created to enable education planners and practitioners to understand the issues at hand, to review and analyse their relevance to particular national and local contexts, and to facilitate the development of education policies, curricula, programmes and lesson plans.
The guide covers four major thematic areas:
1. the science of climate change, which explains the causes and observed changes;
2. the social and human aspects of climate change including gender, health, migration, poverty and ethics;
3. policy responses to climate change including measures for mitigation and adaptation; and
4. education approaches including education for sustainable development, disaster reduction and sustainable lifestyles.
A selection of key resources in the form of publication titles or websites for further reading is provided after each of the thematic sections
Interplay of initial deformation and Coulomb proximity on nuclear decay
Alpha particles emitted from an excited projectile-like fragment (PLF*)
formed in a peripheral collision of two intermediate-energy heavy ions exhibit
a strong preference for emission towards the target-like fragment (TLF). The
interplay of the initial deformation of the PLF* caused by the reaction,
Coulomb proximity, and the rotation of the PLF* results in the observed
anisotropic angular distribution. Changes in the shape of the angular
distribution with excitation energy are interpreted as being the result of
forming more elongated initial geometries in the more peripheral collisions.Comment: 4 figure
- …