9,012 research outputs found
Thermofield-Bosonization on Compact Space
We develop the construction of fermionic fields in terms of bosonic ones to
describe free and interaction models in the circle, using thermofielddynamics.
The description in the case of finite temperature is developed for both normal
modes and zero modes. The treatment extends the thermofield-bosonization for
periodic space
Higher-Derivative Two-Dimensional Massive Fermion Theories
We consider the canonical quantization of a generalized two-dimensional
massive fermion theory containing higher odd-order derivatives. The
requirements of Lorentz invariance, hermiticity of the Hamiltonian and absence
of tachyon excitations suffice to fix the mass term, which contains a
derivative coupling. We show that the basic quantum excitations of a
higher-derivative theory of order 2N+1 consist of a physical usual massive
fermion, quantized with positive metric, plus 2N unphysical massless fermions,
quantized with opposite metrics. The positive metric Hilbert subspace, which is
isomorphic to the space of states of a massive free fermion theory, is selected
by a subsidiary-like condition. Employing the standard bosonization scheme, the
equivalent boson theory is derived. The results obtained are used as a
guideline to discuss the solution of a theory including a current-current
interaction.Comment: 23 pages, Late
On fermionic tilde conjugation rules and thermal bosonization. Hot and cold thermofields
A generalization of Ojima tilde conjugation rules is suggested, which reveals
the coherent state properties of thermal vacuum state and is useful for the
thermofield bosonization. The notion of hot and cold thermofields is introduced
to distinguish different thermofield representations giving the correct normal
form of thermofield solution for finite temperature Thirring model with correct
renormalization and anticommutation properties.Comment: 13 page
Canonical Transformations in a Higher-Derivative Field Theory
It has been suggested that the chiral symmetry can be implemented only in
classical Lagrangians containing higher covariant derivatives of odd order.
Contrary to this belief, it is shown that one can construct an exactly soluble
two-dimensional higher-derivative fermionic quantum field theory containing
only derivatives of even order whose classical Lagrangian exhibits chiral-gauge
invariance. The original field solution is expressed in terms of usual Dirac
spinors through a canonical transformation, whose generating function allows
the determination of the new Hamiltonian. It is emphasized that the original
and transformed Hamiltonians are different because the mapping from the old to
the new canonical variables depends explicitly on time. The violation of
cluster decomposition is discussed and the general Wightman functions
satisfying the positive-definiteness condition are obtained.Comment: 12 pages, LaTe
Attractive Casimir effect in an infrared modified gluon bag model
In this work, we are motivated by previous attempts to derive the vacuum
contribution to the bag energy in terms of familiar Casimir energy calculations
for spherical geometries. A simple infrared modified model is introduced which
allows studying the effects of the analytic structure as well as the geometry
in a clear manner. In this context, we show that if a class of infrared
vanishing effective gluon propagators is considered, then the renormalized
vacuum energy for a spherical bag is attractive, as required by the bag model
to adjust hadron spectroscopy.Comment: 7 pages. 1 figure. Accepted for publication in Physical Review D.
Revised version with improved analysis and presentation, references adde
Coulomb and quantum oscillator problems in conical spaces with arbitrary dimensions
The Schr\"odinger equations for the Coulomb and the Harmonic oscillator
potentials are solved in the cosmic-string conical space-time. The spherical
harmonics with angular deficit are introduced.
The algebraic construction of the harmonic oscillator eigenfunctions is
performed through the introduction of non-local ladder operators. By exploiting
the hidden symmetry of the two-dimensional harmonic oscillator the eigenvalues
for the angular momentum operators in three dimensions are reproduced.
A generalization for N-dimensions is performed for both Coulomb and harmonic
oscillator problems in angular deficit space-times.
It is thus established the connection among the states and energies of both
problems in these topologically non-trivial space-times.Comment: 15 page
Hilbert Space of Isomorphic Representations of Bosonized Chiral
We analyse the Hilbert space structure of the isomorphic gauge non-invariant
and gauge invariant bosonized formulations of chiral for the particular
case of the Jackiw-Rajaraman parameter . The BRST subsidiary conditions
are found not to provide a sufficient criterium for defining physical states in
the Hilbert space and additional superselection rules must to be taken into
account. We examine the effect of the use of a redundant field algebra in
deriving basic properties of the model. We also discuss the constraint
structure of the gauge invariant formulation and show that the only primary
constraints are of first class.Comment: LaTeX, 19 page
- …