197 research outputs found

    Stochastic Continuum Transport Equations for Field-Scale Solute Transport: Overview of Theoretical and Experimental Results

    Get PDF
    One-dimensional transport models that predict field-scale averaged solute fluxes are often used to estimate the risk of nonpoint source groundwater contamination by widespread surface-applied chemicals. However, within-field variability of soil hydraulic properties leads to lateral variation in local solute fluxes. When this smaller scale variability is characterized in a geostatistical sense, stochastic three-dimensional flow and transport equations can be used to predict field-scale averaged transport in terms of geostatistical parameters. We discuss the use of stochastic equations for the parameterization of equivalent one-dimensional models predicting averaged solute fluxes. First, we consider the equivalent one-dimensional convection dispersion model and the equivalent dispersivity, which characterizes the spreading of laterally averaged concentrations or solute fluxes. Second, we discuss the parameterization of a stream tube model to predict local transport variables (i.e., distributions of local concentrations and local arrival times) These local transport variables are shown to be important for predicting nonlinear local transport processes and useful for inversely inferring the spatial structure of soil properties. Stochastic flow and transport equations reveal a dependency of equivalent model parameters on transport distance and flow rate, which reflects the importance of smaller scale heterogeneities on field-scale transport. Approximate solutions of stochastic flow and transport equations are obtained for steady-state and uniform flow. The effect of transient flow conditions on transport is discussed. Throughout the paper we refer to experimental and numerical data that confirm or contradict results from stochastic flow and transport equations

    Sorption and Photodegradation Processes Govern Distribution and Fate of Sulfamethazine in Freshwater−Sediment Microcosms

    Get PDF
    The antibiotic sulfamethazine can be transported from manured fields to surface water bodies. We investigated the degradation and fate of sulfamethazine in pond water using 14C-phenyl-sulfamethazine in small pond water microcosms containing intact sediment and pond water. We found a 2.7-day half-life in pond water and 4.2-day half-life when sulfamethazine was added to the water (5 mg L–1 initial concentration) with swine manure diluted to simulate runoff. Sulfamethazine dissipated exponentially from the water column, with the majority of loss occurring via movement into the sediment phase. Extractable sulfamethazine in sediment accounted for 1.9–6.1% of the applied antibiotic within 14 days and then declined thereafter. Sulfamethazine was transformed mainly into nonextractable sediment-bound residue (40–60% of applied radioactivity) and smaller amounts of photoproducts. Biodegradation, as indicated by metabolite formation and 14CO2 evolution, was less significant than photodegradation. Two photoproducts accounted for 15–30% of radioactivity in the water column at the end of the 63-day study; the photoproducts were the major degradates in the aqueous and sediment phases. Other unidentified metabolites individually accounted for \u3c7% of radioactivity in the water or sediment. Less than 3% of applied radioactivity was mineralized to 14CO2. Manure input significantly increased sorption and binding of sulfamethazine residues to the sediment. These results show concurrent processes of photodegradation and sorption to sediment control aqueous concentrations and establish that sediment is a sink for sulfamethazine and sulfamethazine-related residues. Accumulation of the photoproducts and sulfamethazine in sediment may have important implications for benthic organisms

    The fate of sulfadiazine in soils

    No full text
    • …
    corecore