3 research outputs found

    Zero Modes and the Atiyah-Singer Index in Noncommutative Instantons

    Full text link
    We study the bosonic and fermionic zero modes in noncommutative instanton backgrounds based on the ADHM construction. In k instanton background in U(N) gauge theory, we show how to explicitly construct 4Nk (2Nk) bosonic (fermionic) zero modes in the adjoint representation and 2k (k) bosonic (fermionic) zero modes in the fundamental representation from the ADHM construction. The number of fermionic zero modes is also shown to be exactly equal to the Atiyah-Singer index of the Dirac operator in the noncommutative instanton background. We point out that (super)conformal zero modes in non-BPS instantons are affected by the noncommutativity. The role of Lorentz symmetry breaking by the noncommutativity is also briefly discussed to figure out the structure of U(1) instantons.Comment: v3: 24 pages, Latex, corrected typos, references added, to appear in Phys. Rev.

    Fluctuation, time-correlation function and geometric Phase

    Get PDF
    We establish a fluctuation-correlation theorem by relating the quantum fluctuations in the generator of the parameter change to the time integral of the quantum correlation function between the projection operator and force operator of the ``fast'' system. By taking a cue from linear response theory we relate the quantum fluctuation in the generator to the generalised susceptibility. Relation between the open-path geometric phase, diagonal elements of the quantum metric tensor and the force-force correlation function is provided and the classical limit of the fluctuation-correlation theorem is also discussed.Comment: Latex, 12 pages, no figures, submitted to J. Phys. A: Math & Ge
    corecore