168 research outputs found
Current viewpoints on oxide adherence mechanisms
Additional hot stage Auger experiments have provided surface segregation data for NiCrAl + or - Y or Zr alloys in agreement with other investigations. This data, combined with experimental and theoretical evidence of the Al2O3-metal bond strength, is presented in support of a chemical mechanism of Al2O3 scale adhesion. Both the detrimental effects of sulfur segregation and the beneficial effects of dopant segregation may be important. Chemical features of the dopants are compared in light of these proposed mechanisms, namely delta H sub f (sulfide), delta H sub f (oxide), electron orbital configuration, and insolubility in Ni
Influence of alloying elements on the oxidation behavior of NbAl3
NbAL3 is one candidate material for advanced aeropropulsion systems because of its high melting point, low density, and good oxidation resistance. Although NbAl3 has the lowest oxidation rate among the binary Nb-Al alloys, it does not form exclusive layers of protective Al2O3 scales. Recently Perkin et al., have shown the feasibility of forming alumina scales on Nb-Al alloys at greatly reduced Al contents. However, the objective was to maintain the high Al content, and hence low density, while achieving the capability of growing protective alumina scales. Alloy development followed approaches similar to those used successfully for superalloys and oxidation resistant MCrAlY coatings. Among the three elements examined (Ti, Si, and Cr) as ternary additions to Nb-Al3, Cr was the most effective in favoring the selective oxidation of Al. Nb-41Al-8Cr formed exclusive layers of alumina and had a k sub p value of 0.22 mg squared/cm (sup 4)/hr at 1200 C. The addition of 1 wt percent Y to this alloy was also beneficial, resulting in nearly an order of magnitude decrease in K sub p at 1200 C. Further improvements were achieved by adding about 1 wt percent Si to the quaternary alloy. The k sub p value of 0.012 mg squared/cm (sup 4)/hr for Nb-40Al-8Cr-1Y-1Si at 1200 C was identical to the best NiAl + Zr alloys. These NbAl3 alloys also exhibited excellent cyclic oxidation resistance for 100 hr at 1200 C, being nearly equivalent to NiAl + Zr
The Influence of Specimen Thickness on the High Temperature Corrosion Behavior of CMSX-4 during Thermal-Cycling Exposure
CMSX-4 is a single-crystalline Ni-base superalloy designed to be used at very high temperatures and high mechanical loadings. Its excellent corrosion resistance is due to external alumina-scale formation, which however can become less protective under thermal-cycling conditions. The metallic substrate in combination with its superficial oxide scale has to be considered as a composite suffering high stresses. Factors like different coefficients of thermal expansion between oxide and substrate during temperature changes or growing stresses affect the integrity of the oxide scale. This must also be strongly influenced by the thickness of the oxide scale and the substrate as well as the ability to relief such stresses, e.g., by creep deformation. In order to quantify these effects, thin-walled specimens of different thickness (t = 100500 lm) were prepared. Discontinuous measurements of their mass changes were carried out under thermal-cycling conditions at a hot dwell temperature of 1100 C up to 300 thermal cycles. Thin-walled specimens revealed a much lower oxide-spallation rate compared to thick-walled specimens, while thinwalled specimens might show a premature depletion of scale-forming elements. In order to determine which of these competetive factor is more detrimental in terms of a component’s lifetime, the degradation by internal precipitation was studied using scanning electron microscopy (SEM) in combination with energy-dispersive X-ray spectroscopy (EDS). Additionally, a recently developed statistical spallation model was applied to experimental data [D. Poquillon and D. Monceau, Oxidation of Metals, 59, 409–431 (2003)]. The model describes the overall mass change by oxide scale spallation during thermal cycling exposure and is a useful simulation tool for oxide scale spallation processes accounting for variations in the specimen geometry. The evolution of the net-mass change vs. the number of thermal cycles seems to be strongly dependent on the sample thickness
Business modeling and requirements in RUP: a dependency analysis of activities, tasks and work products
Most artifacts developed during the requirements engineering process relate themselves in different ways. In order to understand in detail how they affect each other during the software development process, it is relevant to iden-tify their interdependencies. This paper presents a systematization of the existing interdependencies between the different elements of the Rational Unified Process (RUP) in the Business Modeling and Requirements disciplines. This work, which highlights knowledge about the different interdependencies and traceability of RUP elements, is useful to avoid unconscious decisions during software the de-velopment process and also, to detect potential problems due to the violation of the existing interdependencies.This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT – Fundação para a Ciência e a Tecnologia within the Project Scope: UID/CEC/00319/2013.info:eu-repo/semantics/publishedVersio
Influence of socioeconomic factors on pregnancy outcome in women with structural heart disease
OBJECTIVE: Cardiac disease is the leading cause of indirect maternal mortality. The aim of this study was to analyse to what extent socioeconomic factors influence the outcome of pregnancy in women with heart disease. METHODS: The Registry of Pregnancy and Cardiac disease is a global prospective registry. For this analysis, countries that enrolled ≥10 patients were included. A combined cardiac endpoint included maternal cardiac death, arrhythmia requiring treatment, heart failure, thromboembolic event, aortic dissection, endocarditis, acute coronary syndrome, hospitalisation for cardiac reason or intervention. Associations between patient characteristics, country characteristics (income inequality expressed as Gini coefficient, health expenditure, schooling, gross domestic product, birth rate and hospital beds) and cardiac endpoints were checked in a three-level model (patient-centre-country). RESULTS: A total of 30 countries enrolled 2924 patients from 89 centres. At least one endpoint occurred in 645 women (22.1%). Maternal age, New York Heart Association classification and modified WHO risk classification were associated with the combined endpoint and explained 37% of variance in outcome. Gini coefficient and country-specific birth rate explained an additional 4%. There were large differences between the individual countries, but the need for multilevel modelling to account for these differences disappeared after adjustment for patient characteristics, Gini and country-specific birth rate. CONCLUSION: While there are definite interregional differences in pregnancy outcome in women with cardiac disease, these differences seem to be mainly driven by individual patient characteristics. Adjustment for country characteristics refined the results to a limited extent, but maternal condition seems to be the main determinant of outcome
Photoelectron and threshold photoelectron valence spectra of pyridine
The pyridine molecule has been examined by the means of photoelectron and threshold photoelectron spectroscopies. Ionization energies were determined for both outer and inner valence orbitals and new adiabatic values were also resolved. Vibronic structure associated with several states was assigned mainly to be due to C-C stretches and ring bends. Additionally a Rydberg state converging to 7b2 state was ascribed. The data shown here are in a good agreement with previous results and brings some new insights into the electronic structure of this biologically and astrochemically relevant and important molecule
- …