2,834 research outputs found

    X-ray Variability of the Magnetic Cataclysmic Variable V1432 Aql and the Seyfert Galaxy NGC 6814

    Full text link
    V1432 Aquilae (=RX J1940.2-1025) is the X-ray bright, eclipsing magnetic cataclysmic variable ~37' away from the Seyfert galaxy, NGC 6814. Due to a 0.3% difference between the orbital (12116.3 s) and the spin (12150 s) periods, the accretion geometry changes over the ~50 day beat period. Here we report the results of an RXTE campaign to observe the eclipse 25 times, as well as of archival observations with ASCA and BeppoSAX. Having confirmed that the eclipse is indeed caused by the secondary, we use the eclipse timings and profiles to map the accretion geometry as a function of the beat phase. We find that the accretion region is compact, and that it moves relative to the center of white dwarf on the beat period. The amplitude of this movement suggest a low-mass white dwarf, in contrast to the high mass previously estimated from its X-ray spectrum. The size of the X-ray emission region appears to be larger than in other eclipsing magnetic CVs. We also report on the RXTE data as well as the long-term behavior of NGC 6814, indicating flux variability by a factor of at least 10 on time scales of years.Comment: 44 pages including 16 figures; ApJ, in pres

    A Synoptic, Multiwavelength Analysis of a Large Quasar Sample

    Full text link
    We present variability and multi-wavelength photometric information for the 933 known quasars in the QUEST Variability Survey. These quasars are grouped into variable and non-variable populations based on measured variability confidence levels. In a time-limited synoptic survey, we detect an anti-correlation between redshift and the likelihood of variability. Our comparison of variability likelihood to radio, IR, and X-ray data is consistent with earlier quasar studies. Using already-known quasars as a template, we introduce a light curve morphology algorithm that provides an efficient method for discriminating variable quasars from periodic variable objects in the absence of spectroscopic information. The establishment of statistically robust trends and efficient, non-spectroscopic selection algorithms will aid in quasar identification and categorization in upcoming massive synoptic surveys. Finally, we report on three interesting variable quasars, including variability confirmation of the BL Lac candidate PKS 1222+037.Comment: AJ, accepted for publication 15 Dec 200

    Optical spectroscopy and X-ray observations of the D-type symbiotic star EF Aql

    Get PDF
    We performed high-resolution optical spectroscopy and X-ray observations of the recently identified Mira-type symbiotic star EF Aql. Based on high-resolution optical spectroscopy obtained with SALT, we determine the temperature (\sim 55 000 K) and the luminosity (\sim 5.3 LL_\odot) of the hot component in the system. The heliocentric radial velocities of the emission lines in the spectra reveal possible stratification of the chemical elements. We also estimate the mass-loss rate of the Mira donor star. Our Swift observation did not detect EF Aql in X-rays. The upper limit of the X-ray observations is 1012^{-12} erg cm2^{-2} s1^{-1}, which means that EF Aql is consistent with the faintest X-ray systems detected so far. Otherwise we detected it with the UVOT instrument with an average UVM2 magnitude of 14.05. During the exposure, EF Aql became approximately 0.2 UVM2 magnitudes fainter. The periodogram analysis of the V-band data reveals an improved period of 320.4±\pm0.3 d caused by the pulsations of the Mira-type donor star. The spectra are available upon request from the authors.Comment: Accepted for publication in MNRA

    Deriving an X-Ray Luminosity Function of Dwarf Novae Based on Parallax Measurements

    Get PDF
    We have derived an X-ray luminosity function using parallax-based distance measurements of a set of 12 dwarf novae, consisting of Suzaku, XMM-Newton and ASCA observations. The shape of the X-ray luminosity function obtained is the most accurate to date, and the luminosities of our sample are concentrated between ~10^{30}-10^{31} erg s^{-1}, lower than previous measurements of X-ray luminosity functions of dwarf novae. Based on the integrated X-ray luminosity function, the sample becomes more incomplete below ~3 x 10^{30} erg s^{-1} than it is above this luminosity limit, and the sample is dominated by X-ray bright dwarf novae. The total integrated luminosity within a radius of 200 pc is 1.48 x 10^{32} erg s^{-1} over the luminosity range of 1 x 10^{28} erg s^{-1} and the maximum luminosity of the sample (1.50 x 10^{32} erg s^{-1}). The total absolute lower limit for the normalised luminosity per solar mass is 1.81 x 10^{26} erg s^{-1} M^{-1}_{solar} which accounts for ~16 per cent of the total X-ray emissivity of CVs as estimated by Sazonov et al. (2006)

    The Origin of Soft X-rays in DQ Herculis

    Full text link
    DQ Herculis (Nova Herculis 1934) is a deeply eclipsing cataclysmic variable containing a magnetic white dwarf primary. The accretion disk is thought to block our line of sight to the white dwarf at all orbital phases due to its extreme inclination angle. Nevertheless, soft X-rays were detected from DQ Her with ROSAT PSPC. To probe the origin of these soft X-rays, we have performed Chandra ACIS observations. We confirm that DQ Her is an X-ray source. The bulk of the X-rays are from a point-like source and exhibit a shallow partial eclipse. We interpret this as due to scattering of the unseen central X-ray source, probably in an accretion disk wind. At the same time, we observe what appear to be weak extended X-ray features around DQ Her, which we interpret as an X-ray emitting knot in the nova shell.Comment: 18 pages including 4 figures, accepted for publication in Astrphyisical Journa

    Confocal microphotoluminescence of InGaN-based light-emitting diodes

    Get PDF
    Spatially resolved photoluminescence (PL) of InGaN/GaN/AlGaN-based quantum-well-structured light-emitting diodes (LEDs) with a yellow-green light (530 nm) and an amber light (600 nm) was measured by using confocal microscopy. Submicron-scale spatial inhomogeneities of both PL intensities and spectra were found in confocal micro-PL images. We also found clear correlations between PL intensities and peak wavelength for both LEDs. Such correlations for yellow-green and amber LEDs were different from the reported correlations for blue or green LEDs. This discrepancy should be due to different diffusion, localization, and recombination dynamics of electron-hole pairs generated in InGaN active layers, and should be a very important property for influencing the optical properties of LEDs. In order to explain the results, we proposed a possible carrier dynamics model based on the carrier localization and partial reduction of the quantum confinement Stark effect depending on an indium composition in InGaN active layers. By using this model, we also considered the origin of the reduction of the emission efficiencies with a longer emission wavelength of InGaN LEDs with high indium composition

    The Distance to Nova V959 Mon from VLA Imaging

    Get PDF
    Determining reliable distances to classical novae is a challenging but crucial step in deriving their ejected masses and explosion energetics. Here we combine radio expansion measurements from the Karl G. Jansky Very Large Array with velocities derived from optical spectra to estimate an expansion parallax for nova V959 Mon, the first nova discovered through its gamma-ray emission. We spatially resolve the nova at frequencies of 4.5-36.5 GHz in nine different imaging epochs. The first five epochs cover the expansion of the ejecta from 2012 October to 2013 January, while the final four epochs span 2014 February to 2014 May. These observations correspond to days 126 through 199 and days 615 through 703 after the first detection of the nova. The images clearly show a non-spherical ejecta geometry. Utilizing ejecta velocities derived from 3D modelling of optical spectroscopy, the radio expansion implies a distance between 0.9 +/- 0.2 and 2.2 +/- 0.4 kpc, with a most probable distance of 1.4 +/- 0.4 kpc. This distance implies a gamma-ray luminosity much less than the prototype gamma-ray-detected nova, V407 Cyg, possibly due to the lack of a red giant companion in the V959 Mon system. V959 Mon also has a much lower gamma-ray luminosity than other classical novae detected in gamma-rays to date, indicating a range of at least a factor of 10 in the gamma-ray luminosities for these explosions.Comment: 11 pages, 8 figures, 3 tables, submitted to ApJ 2015-01-21, under revie

    Dynamical models of Kuiper Belt dust in the inner and outer Solar System

    Full text link
    We report several results related to the dynamical evolution of dust produced in the Kuiper Belt (KB). We show that its particle size frequency distribution in space is greatly changed from the distribution at production, as a results of the combined effects of radiation forces and the perturbations of the planets. We estimate the contribution of KB dust to the zodiacal cloud by calculating the radial profile of its number density near the ecliptic. We also study the contribution of KB dust to the population of interplanetary dust particles (IDPs) collected at Earth, by calculating geocentric encounter velocities and capture rates. Our models show, in contrast with previous studies, that KB dust grains on Earth-crossing orbits have high eccentricities and inclinations and, therefore, their encounter velocities are similar to those of cometary grains and not to asteroidal grains. We estimate that at most 25% in number of captured IDPs have cometary or KB origin; the KB contribution may be as low as 1%-2%. We present the velocity field of KB dust throughout the solar system; this, together with the number density radial profile, is potentially useful for planning spacecraft missions to the outer solar system.Comment: 25 pages (pre-print format), including 5 figures. Published in AJ (2003
    corecore