8 research outputs found

    Nearly Instantaneous Alternatives in Quantum Mechanics

    Get PDF
    Usual quantum mechanics predicts probabilities for the outcomes of measurements carried out at definite moments of time. However, realistic measurements do not take place in an instant, but are extended over a period of time. The assumption of instantaneous alternatives in usual quantum mechanics is an approximation whose validity can be investigated in the generalized quantum mechanics of closed systems in which probabilities are predicted for spacetime alternatives that extend over time. In this paper we investigate how alternatives extended over time reduce to the usual instantaneous alternatives in a simple model in non-relativistic quantum mechanics. Specifically, we show how the decoherence of a particular set of spacetime alternatives becomes automatic as the time over which they extend approaches zero and estimate how large this time can be before the interference between the alternatives becomes non-negligible. These results suggest that the time scale over which coarse grainings of such quantities as the center of mass position of a massive body may be extended in time before producing significant interference is much longer than characteristic dynamical time scales.Comment: 12 pages, harvmac, no figure

    Decoherent histories analysis of the relativistic particle

    Get PDF
    The Klein-Gordon equation is a useful test arena for quantum cosmological models described by the Wheeler-DeWitt equation. We use the decoherent histories approach to quantum theory to obtain the probability that a free relativistic particle crosses a section of spacelike surface. The decoherence functional is constructed using path integral methods with initial states attached using the (positive definite) ``induced'' inner product between solutions to the constraint equation. The notion of crossing a spacelike surface requires some attention, given that the paths in the path integral may cross such a surface many times, but we show that first and last crossings are in essence the only useful possibilities. Different possible results for the probabilities are obtained, depending on how the relativistic particle is quantized (using the Klein-Gordon equation, or its square root, with the associated Newton-Wigner states). In the Klein-Gordon quantization, the decoherence is only approximate, due to the fact that the paths in the path integral may go backwards and forwards in time. We compare with the results obtained using operators which commute with the constraint (the ``evolving constants'' method).Comment: 51 pages, plain Te

    Trajectories for the Wave Function of the Universe from a Simple Detector Model

    Get PDF
    Inspired by Mott's (1929) analysis of particle tracks in a cloud chamber, we consider a simple model for quantum cosmology which includes, in the total Hamiltonian, model detectors registering whether or not the system, at any stage in its entire history, passes through a series of regions in configuration space. We thus derive a variety of well-defined formulas for the probabilities for trajectories associated with the solutions to the Wheeler-DeWitt equation. The probability distribution is peaked about classical trajectories in configuration space. The ``measured'' wave functions still satisfy the Wheeler-DeWitt equation, except for small corrections due to the disturbance of the measuring device. With modified boundary conditions, the measurement amplitudes essentially agree with an earlier result of Hartle derived on rather different grounds. In the special case where the system is a collection of harmonic oscillators, the interpretation of the results is aided by the introduction of ``timeless'' coherent states -- eigenstates of the Hamiltonian which are concentrated about entire classical trajectories.Comment: 37 pages, plain Tex. Second draft. Substantial revision

    Decoherent Histories Approach to the Arrival Time Problem

    Get PDF
    We use the decoherent histories approach to quantum theory to compute the probability of a non-relativistic particle crossing x=0x=0 during an interval of time. For a system consisting of a single non-relativistic particle, histories coarse-grained according to whether or not they pass through spacetime regions are generally not decoherent, except for very special initial states, and thus probabilities cannot be assigned. Decoherence may, however, be achieved by coupling the particle to an environment consisting of a set of harmonic oscillators in a thermal bath. Probabilities for spacetime coarse grainings are thus calculated by considering restricted density operator propagators of the quantum Brownian motion model. We also show how to achieve decoherence by replicating the system NN times and then projecting onto the number density of particles that cross during a given time interval, and this gives an alternative expression for the crossing probability. The latter approach shows that the relative frequency for histories is approximately decoherent for sufficiently large NN, a result related to the Finkelstein-Graham-Hartle theorem.Comment: 42 pages, plain Te
    corecore