2,748 research outputs found
Nitrogen and Phosphorus Nutrition of Digitaria eriantha: is it Limited by Absorption Capacity or Rate of Supply?
Digitaria eriantha was grown from seed collected from low and high nutrient habitats. The plants were grown with either a high or low nutrient supply for 12 weeks. Rates of nitrogen and phosphorus absorption were measured on excised roots using colorimetric assays. The grasses from the low nutrient areas achieved the same maximum uptake rates regardless of the level of N supplied, This was not so for the grasses from the high nutrient site which increased their uptake rates with increased N supply. Plants from the low nutrient site showed markedly increased P absorption when supplied with high levels of P. These results support the idea that for mobile ions the supply of those ions to the root is the overall controlling factor on the rate of nutrient uptake. However, for the immobile ion the rate of nutrient absorption was the controlling factor
Above ground woody community attributes, biomass and carbon stocks along a rainfall gradient in the savannas of the central lowveld, South Africa
Enumeration of carbon stocks at benchmark sites is a necessary activity in assessing the potential carbon sequestration and possible generation of credits through restoration of intensively impacted sites. However, there is a lack of empirical studies throughout much of the savannas of sub-Saharan Africa, including South Africa. We report an estimation of species specific and site biomass and carbon stocks, and general vegetation structural attributes from three protected areas along a rainfall gradient in the central lowveld, South Africa. Estimates of biomass and carbon stocks were effected through destructive sampling to establish locally derived allometric equations. There was a gradient of increasing woody density, height of the canopy, number of species, density of regenerative stems and a greater proportion of stems in small size classes from the arid locality to the mesic locality, with the semi-arid locality being intermediate. The proportion of spinescent species decreased with increasing rainfall. The mesic locality was significantly more woody than either the arid or semi-arid sites, having double the biomass, four times the density and 40% higher basal area. Above ground carbon pools were also higher; carbon stocks were approximately 9 t/ha for the arid and semi-arid sites and 18 t/ha for the mesic site
Forward suppression in the auditory cortex is frequency-specific
We investigated how physiologically observed forward suppression interacts with stimulus frequency in neuronal responses in the guinea pig auditory cortex. The temporal order and frequency proximity of sounds influence both their perception and neuronal responses. Psychophysically, preceding sounds (conditioners) can make successive sounds (probes) harder to hear. These effects are larger when the two sounds are spectrally similar. Physiological forward suppression is usually maximal for conditioner tones near to a unit's characteristic frequency (CF), the frequency to which a neuron is most sensitive. However, in most physiological studies, the frequency of the probe tone and CF are identical, so the role of unit CF and probe frequency cannot be distinguished. Here, we systemically varied the frequency of the probe tone, and found that the tuning of suppression was often more closely related to the frequency of the probe tone than to the unit's CF, i.e. suppressed tuning was specific to probe frequency. This relationship was maintained for all measured gaps between the conditioner and the probe tones. However, when the probe frequency and CF were similar, CF tended to determine suppressed tuning. In addition, the bandwidth of suppression was slightly wider for off-CF probes. Changes in tuning were also reflected in the firing rate in response to probe tones, which was maximally reduced when probe and conditioner tones were matched in frequency. These data are consistent with the idea that cortical neurons receive convergent inputs with a wide range of tuning properties that can adapt independently
Ab-Initio Calculation of Molecular Aggregation Effects: a Coumarin-343 Case Study
We present time-dependent density functional theory (TDDFT) calculations for
single and dimerized Coumarin-343 molecules in order to investigate the quantum
mechanical effects of chromophore aggregation in extended systems designed to
function as a new generation of sensors and light-harvesting devices. Using the
single-chromophore results, we describe the construction of effective
Hamiltonians to predict the excitonic properties of aggregate systems. We
compare the electronic coupling properties predicted by such effective
Hamiltonians to those obtained from TDDFT calculations of dimers, and to the
coupling predicted by the transition density cube (TDC) method. We determine
the accuracy of the dipole-dipole approximation and TDC with respect to the
separation distance and orientation of the dimers. In particular, we
investigate the effects of including Coulomb coupling terms ignored in the
typical tight-binding effective Hamiltonian. We also examine effects of orbital
relaxation which cannot be captured by either of these models
Droughts and the ecological future of tropical savanna vegetation
1. Climate change is expected to lead to more frequent, intense and longer droughts in the future, with major implications for ecosystem processes and human livelihoods. The impacts of such droughts are already evident, with vegetation dieback reported from a range of ecosystems, including savannas, in recent years.
2. Most of our insights into the mechanisms governing vegetation drought responses have come from forests and temperate grasslands, while responses of savannas have received less attention. Because the two life forms that dominate savannas—C3 trees and C4 grasses—respond differently to the same environmental controls, savanna responses to droughts can differ from those of forests and grasslands.
3. Drought‐driven mortality of savanna vegetation is not readily predicted by just plant drought‐tolerance traits alone, but is the net outcome of multiple factors, including drought‐avoidance strategies, landscape and neighborhood context, and impacts of past and current stressors including fire, herbivory and inter‐life form competition.
4. Many savannas currently appear to have the capacity to recover from moderate to severe short‐term droughts, although recovery times can be substantial. Factors facilitating recovery include the resprouting ability of vegetation, enhanced flowering and seeding and post‐drought amelioration of herbivory and fire. Future increases in drought severity, length and frequency can interrupt recovery trajectories and lead to compositional shifts, and thus pose substantial threats, particularly to arid and semi‐arid savannas.
5. Synthesis. Our understanding of, and ability to predict, savanna drought responses is currently limited by availability of relevant data, and there is an urgent need for campaigns quantifying drought‐survival traits across diverse savannas. Importantly, these campaigns must move beyond reliance on a limited set of plant functional traits to identifying suites of physiological, morphological, anatomical and structural traits or “syndromes” that encapsulate both avoidance and tolerance strategies. There is also a critical need for a global network of long‐term savanna monitoring sites as these can provide key insights into factors influencing both resistance and resilience of different savannas to droughts. Such efforts, coupled with site‐specific rainfall manipulation experiments that characterize plant trait–drought response relationships, and modelling efforts, will enable a more comprehensive understanding of savanna drought responses
Recommended from our members
Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils
Soils play a pivotal role in major global biogeochemical cycles (carbon, nutrient, and water), while hosting the largest diversity of organisms on land. Because of this, soils deliver fundamental ecosystem services, and management to change a soil process in support of one ecosystem service can either provide co-benefits to other services or result in trade-offs. In this critical review, we report the state-of-the-art understanding concerning the biogeochemical cycles and biodiversity in soil, and relate these to the provisioning, regulating, supporting, and cultural ecosystem services which they underpin. We then outline key knowledge gaps and research challenges, before providing recommendations for management activities to support the continued delivery of ecosystem services from soils. We conclude that, although soils are complex, there are still knowledge gaps, and fundamental research is still needed to better understand the relationships between different facets of soils and the array of ecosystem services they underpin, enough is known to implement best practices now. There is a tendency among soil scientists to dwell on the complexity and knowledge gaps rather than to focus on what we do know and how this knowledge can be put to use to improve the delivery of ecosystem services. A significant challenge is to find effective ways to share knowledge with soil managers and policy makers so that best management can be implemented. A key element of this knowledge exchange must be to raise awareness of the ecosystems services underpinned by soils and thus the natural capital they provide. We know enough to start moving in the right direction while we conduct research to fill in our knowledge gaps. The lasting legacy of the International Year of Soils in 2015 should be for soil scientists to work together with policy makers and land managers to put soils at the centre of environmental policy making and land management decisions.</p
Response of carbon fluxes to water relations in a savanna ecosystem in South Africa
International audienceThe principal mechanisms that connect carbon fluxes with water relations in savanna ecosystems were studied by using eddy covariance in a savanna ecosystem at Kruger National Park, South Africa. Since the annual drought and rewetting cycle is a major factor influencing the function of savanna ecosystems, this work focused on the close inter-connection between water relations and carbon fluxes. Data from a nine-month measuring campaign lasting from the early wet season to the late dry season were used. Total ecosystem respiration showed highest values at the onset of the growing season, a slightly lower plateau during the main part of the growing season and a continuous decrease during the transition towards the dry season. The regulation of canopy conductance was changed in two ways: changes due to phenology during the course of the growing season and short-term acclimation to soil water conditions. The most constant parameter was water use efficiency that was influenced by VPD during the day but the VPD response curve of water usage did change only slightly during the course of the growing season and decreased by about 30% during the transition from wet to dry season. The regulation of canopy conductance and photosynthetic capacity were closely related. This observation meets recent leaf-level findings that stomatal closure triggers down-regulation of Rubisco during drought. Our results may show the effects of these processes on the ecosystem scale
Drivers of inter-annual variability in Net Ecosystem Exchange in a semi-arid savanna ecosystem, South Africa
Inter-annual variability in primary production and ecosystem respiration was explored using eddy-covariance data at a semi-arid savanna site in the Kruger Park, South Africa. New methods of extrapolating night-time respiration to the entire day and filling gaps in eddy-covariance data in semi-arid systems were developed. Net ecosystem exchange (NEE) in these systems occurs as pulses associated with rainfall events, a pattern not well-represented in current standard gap-filling procedures developed primarily for temperate flux sites. They furthermore do not take into account the decrease in respiration at high soil temperatures. An artificial neural network (ANN) model incorporating these features predicted measured fluxes accurately (MAE 0.42 gC/m<sup>2</sup>/day), and was able to represent the seasonal patterns of photosynthesis and respiration at the site. The amount of green leaf area (indexed using satellite-derived estimates of fractional interception of photosynthetically active radiation <i>f</i><sub>APAR</sub>), and the timing and magnitude of rainfall events, were the two most important predictors used in the ANN model. These drivers were also identified by multiple linear regressions (MLR), with strong interactive effects. The annual integral of the filled NEE data was found to range from &minus;138 to +155 g C/m<sup>2</sup>/y over the 5 year eddy covariance measurement period. When applied to a 25 year time series of meteorological data, the ANN model predicts an annual mean NEE of 75(&plusmn;105) g C/m<sup>2</sup>/y. The main correlates of this inter-annual variability were found to be variation in the amount of absorbed photosynthetically active radiation (APAR), length of the growing season, and number of days in the year when moisture was available in the soil
Comparison of the genetic algorithm and incremental optimisation routines for a Bayesian inverse modelling based network design
The design of an optimal network of atmospheric monitoring stations for the observation of carbon dioxide (CO2) concentrations can be obtained by applying an optimisation algorithm to a cost function based on minimising posterior uncertainty in the CO2; fluxes obtained from a Bayesian inverse modelling solution. Two candidate optimisation methods assessed were the evolutionary algorithm: the Genetic Algorithm (GA), and the deterministic algorithm: the Incremental Optimisation (IO) routine.
This paper assessed the ability of the IO routine in comparison to the more computationally demanding GA routine to optimise the placement of a five-member network of CO2 monitoring sites located in South Africa. The comparison considered the reduction in uncertainty of the overall flux estimate, the spatial similarity of solutions, and computational requirements. Although the IO routine failed to find the solution with the global maximum uncertainty reduction, the resulting solution had only fractionally lower uncertainty reduction compared with the GA, and at only a quarter of the computational resources used by the lowest specified GA algorithm. The GA solution set showed more inconsistency if the number of iterations or population size was small, and more so for a complex prior flux covariance matrix. If the GA completed with a sub-optimal solution, these solutions were similar in fitness to the best available solution.
Two additional scenarios were considered, with the objective of creating circumstances where the GA may outperform the IO. The first scenario considered an established network, where the optimisation was required to add an additional five stations to an existing five-member network. In the second scenario the optimisation was based only on the uncertainty reduction within a subregion of the domain. The GA was able to find a better solution than the IO under both scenarios, but with only a marginal improvement in the uncertainty reduction. These results suggest that the best use of resources for the network design problem would be spent in improvement of the prior estimates of the flux uncertainties rather than investing these resources in running a complex evolutionary optimisation algorithm.
The authors recommend that, if time and computational resources allow, that multiple optimisation techniques should be used as a part of a comprehensive suite of sensitivity tests when performing such an optimisation exercise. This will provide a selection of best solutions which could be ranked based on their utility and practicality.</p
Organizational-Social-Capital, Time and International Family SMEs:An Empirical Study from the East of England
Previous studies on family-SME internationalization have largely focused on what resources are needed to drive an incremental process rather than how resource management occurs in historical time. This paper focuses on the latter, adopting a social capital perspective (capturing both internal, i.e. among family-SME board members, and external, cross border agent dyads, relations) in order to decipher case study data from the East of England. Findings show that it is not the presence or absence of organizational-social-capital that affects family-SME internationalization success but rather its variable use over the years driven by the future pursuit of longevity, not growth. Key within this context is the variable use of the international expertise and management capability of non-family managers in the family SME intra-organizational context. Ultimately this may lead to change and learning that occurs erratically, often including reversals, without causing family-SME progression across a sequence of incremental stages
- …