340 research outputs found

    Nanosecond molecular relaxations in lipid bilayers studied by high energy resolution neutron scattering and in-situ diffraction

    Full text link
    We report a high energy-resolution neutron backscattering study to investigate slow motions on nanosecond time scales in highly oriented solid supported phospholipid bilayers of the model system DMPC -d54 (deuterated 1,2-dimyristoyl-sn-glycero-3-phoshatidylcholine), hydrated with heavy water. Wave vector resolved quasi-elastic neutron scattering (QENS) is used to determine relaxation times τ\tau, which can be associated with different molecular components, i.e., the lipid acyl chains and the interstitial water molecules in the different phases of the model membrane system. The inelastic data are complemented both by energy resolved and energy integrated in-situ diffraction. From a combined analysis of the inelastic data in the energy and time domain, the respective character of the relaxation, i.e., the exponent of the exponential decay is also determined. From this analysis we quantify two relaxation processes. We associate the fast relaxation with translational diffusion of lipid and water molecules while the slow process likely stems from collective dynamics

    Bi-stochastic kernels via asymmetric affinity functions

    Full text link
    In this short letter we present the construction of a bi-stochastic kernel p for an arbitrary data set X that is derived from an asymmetric affinity function {\alpha}. The affinity function {\alpha} measures the similarity between points in X and some reference set Y. Unlike other methods that construct bi-stochastic kernels via some convergent iteration process or through solving an optimization problem, the construction presented here is quite simple. Furthermore, it can be viewed through the lens of out of sample extensions, making it useful for massive data sets.Comment: 5 pages. v2: Expanded upon the first paragraph of subsection 2.1. v3: Minor changes and edits. v4: Edited comments and added DO

    Distinguishing among Technicolor/Warped Scenarios in Dileptons

    Get PDF
    Models of dynamical electroweak symmetry breaking usually include new spin-1 resonances, whose couplings and masses have to satisfy electroweak precision tests. We propose to use dilepton searches to probe the underlying structure responsible for satisfying these. Using the invariant mass spectrum and charge asymmetry, we can determine the number, parity, and isospin of these resonances. We pick three models of strong/warped symmetry breaking, and show that each model produces specific features that reflect this underlying structure of electroweak symmetry breaking and cancellations.Comment: Added missing referenc

    It is a Graviton! or maybe not

    Full text link
    The discovery of Kaluza-Klein (KK) gravitons is a smoking gun of extra dimensions. Other scenarios, however, could give rise to spin-two resonances of a new strongly-coupled sector and act as impostors. In this paper we prove that a spin-two resonance does not couple to the Standard Model through dimension-four operators. We then show that the massive graviton and its impostor both couple to the Standard Model through the same dimension-five operators. Therefore the spin determination is identical. Nevertheless, we also show that one can use the ratio of branching ratios to photons and to jets for distinguishing between KK gravitons and their impostors. The capacity to distinguish between KK gravitons and impostors is a manifestation of the breakdown of the duality between AdS and strongly-coupled theories.Comment: 14 pages, 3 figures, 1 table. References added, typos correcte

    Mass-Matching in Higgsless

    Full text link
    Modern extra-dimensional Higgsless scenarios rely on a mass-matching between fermionic and bosonic KK resonances to evade constraints from precision electroweak measurements. After analyzing all of the Tevatron and LEP bounds on these so-called Cured Higgsless scenarios, we study their LHC signatures and explore how to identify the mass-matching mechanism, the key to their viability. We find singly and pair produced fermionic resonances show up as clean signals with 2 or 4 leptons and 2 hard jets, while neutral and charged bosonic resonances are visible in the dilepton and leptonic WZ channels, respectively. A measurement of the resonance masses from these channels shows the matching necessary to achieve S0S\simeq 0. Moreover, a large single production of KK-fermion resonances is a clear indication of compositeness of SM quarks. Discovery reach is below 10 fb1^{-1} of luminosity for resonances in the 700 GeV range.Comment: 28 pages, 18 figure

    Effective Action and Holography in 5D Gauge Theories

    Full text link
    We apply the holographic method to 5D gauge theories on the warped interval. Our treatment includes the scalars associated with the fifth gauge field component, which appear as 4D Goldstone bosons in the holographic effective action. Applications are considered to two classes of models in which these scalars play an important role. In the Composite-Higgs (and/or Gauge-Higgs Unification) scenario, the scalars are interpreted as the Higgs field and we use the holographic recipe to compute its one-loop potential. In AdS/QCD models, the scalars are identified with the mesons and we compute holographically the Chiral Perturbation Theory Lagrangian up to p^4 order. We also discuss, using the holographic perspective, the effect of including a Chern-Simons term in the 5D gauge Lagrangian. We show that it makes a Wess-Zumino-Witten term to appear in the holographic effective action. This is immediately applied to AdS/QCD, where a Chern-Simons term is needed in order to mimic the Adler-Bardeen chiral anomaly.Comment: 37 pages; v2, minor changes, one reference added; v3, minor corrections, version published in JHE
    corecore