848 research outputs found

    A simple interpretation of quantum mirages

    Full text link
    In an interesting new experiment the electronic structure of a magnetic atom adsorbed on the surface of Cu(111), observed by STM, was projected into a remote location on the same surface. The purpose of the present paper is to interpret this experiment with a model Hamiltonian, using ellipses of the size of the experimental ones, containing about 2300 atoms. The charge distribution for the different wavefunctions is analyzed, in particular, for those with energy close to the Fermi energy of copper Ef. Some of them show two symmetric maxima located on the principal axis of the ellipse but not necessarily at the foci. If a Co atom is adsorbed at the site where the wavefunction with energy EFE_F has a maximum and the interaction is small, the main effect of the adsorbed atom will be to split this particular wavefunction in two. The total charge density will remain the same but the local density of states will present a dip at Ef at any site where the charge density is large enough. We relate the presence of this dip to the observation of quantum mirages. Our interpretation suggests that other sites, apart from the foci of the ellipses, can be used for projecting atomic images and also indicates the conditions for other non magnetic adsorbates to produce mirages.Comment: 3 pages, 3 Fig

    A different appetite for sovereignty? Independence movements in subnational island jurisdictions

    Get PDF
    Local autonomy in a subnational jurisdiction is more likely to be gained, secured or enhanced where there are palpable movements or political parties agitating for independence in these smaller territories. A closer look at the fortunes, operations and dynamics of independence parties from subnational island jurisdictions can offer some interesting insights on the appetite for sovereignty and independence, but also the lack thereof, in the twenty-first century.peer-reviewe

    Geometry of River Networks I: Scaling, Fluctuations, and Deviations

    Get PDF
    This article is the first in a series of three papers investigating the detailed geometry of river networks. Large-scale river networks mark an important class of two-dimensional branching networks, being not only of intrinsic interest but also a pervasive natural phenomenon. In the description of river network structure, scaling laws are uniformly observed. Reported values of scaling exponents vary suggesting that no unique set of scaling exponents exists. To improve this current understanding of scaling in river networks and to provide a fuller description of branching network structure, we report here a theoretical and empirical study of fluctuations about and deviations from scaling. We examine data for continent-scale river networks such as the Mississippi and the Amazon and draw inspiration from a simple model of directed, random networks. We center our investigations on the scaling of the length of sub-basin's dominant stream with its area, a characterization of basin shape known as Hack's law. We generalize this relationship to a joint probability density and show that fluctuations about scaling are substantial. We find strong deviations from scaling at small scales which can be explained by the existence of linear network structure. At intermediate scales, we find slow drifts in exponent values indicating that scaling is only approximately obeyed and that universality remains indeterminate. At large scales, we observe a breakdown in scaling due to decreasing sample space and correlations with overall basin shape. The extent of approximate scaling is significantly restricted by these deviations and will not be improved by increases in network resolution.Comment: 16 pages, 13 figures, Revtex4, submitted to PR

    Surgical experience and identification of errors in laparoscopic cholecystectomy.

    Get PDF
    BACKGROUND: Surgical errors are acts or omissions resulting in negative consequences and/or increased operating time. This study describes surgeon-reported errors in laparoscopic cholecystectomy. METHODS: Intraoperative videos were uploaded and annotated on Touch SurgeryTM Enterprise. Participants evaluated videos for severity using a 10-point intraoperative cholecystitis grading score, and errors using Observational Clinical Human Reliability Assessment, which includes skill, consequence, and mechanism classifications. RESULTS: Nine videos were assessed by 8 participants (3 junior (specialist trainee (ST) 3-5), 2 senior trainees (ST6-8), and 3 consultants). Participants identified 550 errors. Positive relationships were seen between total operating time and error count (r2 = 0.284, P < 0.001), intraoperative grade score and error count (r2 = 0.578, P = 0.001), and intraoperative grade score and total operating time (r2 = 0.157, P < 0.001). Error counts differed significantly across intraoperative phases (H(6) = 47.06, P < 0.001), most frequently at dissection of the hepatocystic triangle (total 282; median 33.5 (i.q.r. 23.5-47.8, range 15-63)), ligation/division of cystic structures (total 124; median 13.5 (i.q.r. 12-19.3, range 10-26)), and gallbladder dissection (total 117; median 14.5 (i.q.r. 10.3-18.8, range 6-26)). There were no significant differences in error counts between juniors, seniors, and consultants (H(2) = 0.03, P = 0.987). Errors were classified differently. For dissection of the hepatocystic triangle, thermal injuries (50 in total) were frequently classified as executional, consequential errors; trainees classified thermal injuries as step done with excessive force, speed, depth, distance, time or rotation (29 out of 50), whereas consultants classified them as incorrect orientation (6 out of 50). For ligation/division of cystic structures, inappropriate clipping (60 errors in total), procedural errors were reported by junior trainees (6 out of 60), but not consultants. For gallbladder dissection, inappropriate dissection (20 errors in total) was reported in incorrect planes by consultants and seniors (6 out of 20), but not by juniors. Poor economy of movement (11 errors in total) was reported more by consultants (8 out of 11) than trainees (3 out of 11). CONCLUSION: This study suggests that surgical experience influences error interpretation, but the benefits for surgical training are currently unclear

    Geometry of River Networks II: Distributions of Component Size and Number

    Get PDF
    The structure of a river network may be seen as a discrete set of nested sub-networks built out of individual stream segments. These network components are assigned an integral stream order via a hierarchical and discrete ordering method. Exponential relationships, known as Horton's laws, between stream order and ensemble-averaged quantities pertaining to network components are observed. We extend these observations to incorporate fluctuations and all higher moments by developing functional relationships between distributions. The relationships determined are drawn from a combination of theoretical analysis, analysis of real river networks including the Mississippi, Amazon and Nile, and numerical simulations on a model of directed, random networks. Underlying distributions of stream segment lengths are identified as exponential. Combinations of these distributions form single-humped distributions with exponential tails, the sums of which are in turn shown to give power law distributions of stream lengths. Distributions of basin area and stream segment frequency are also addressed. The calculations identify a single length-scale as a measure of size fluctuations in network components. This article is the second in a series of three addressing the geometry of river networks.Comment: 16 pages, 13 figures, 4 tables, Revtex4, submitted to PR

    Concurrent pulmonary zygomycosis and Mycobacterium tuberculosis infection: a case report

    Get PDF
    A non-smoking 77-year old gentleman of Indian origin was admitted with a 4-month history of intermittent night sweats, haemoptysis and 6 kg of weight loss. CT scan of thorax demonstrated a 2.5 cm mass in the right middle lobe with multiple small nodules within the right lung and confirmed the presence of mediastinal and hilar lymph nodes

    Unified View of Scaling Laws for River Networks

    Full text link
    Scaling laws that describe the structure of river networks are shown to follow from three simple assumptions. These assumptions are: (1) river networks are structurally self-similar, (2) single channels are self-affine, and (3) overland flow into channels occurs over a characteristic distance (drainage density is uniform). We obtain a complete set of scaling relations connecting the exponents of these scaling laws and find that only two of these exponents are independent. We further demonstrate that the two predominant descriptions of network structure (Tokunaga's law and Horton's laws) are equivalent in the case of landscapes with uniform drainage density. The results are tested with data from both real landscapes and a special class of random networks.Comment: 14 pages, 9 figures, 4 tables (converted to Revtex4, PRE ref added

    Stratification of Patients With Sjögren’s Syndrome and Patients With Systemic Lupus Erythematosus According to Two Shared Immune Cell Signatures, With Potential Therapeutic Implications

    Get PDF
    OBJECTIVE: Similarities in the clinical and laboratory features of patients with primary Sjögren's syndrome (pSS) and systemic lupus erythematosus (SLE) have led to attempts to treat pSS and SLE patients with similar biologic therapeutics. However, the results of many clinical trials are disappointing, and no biologic treatments are licensed in pSS, while few are available for SLE patients with refractory disease. Identifying shared immunological features between pSS and SLE could lead to better treatment selection using a stratification approach. METHODS: Immune-phenotyping of 29 immune-cell subsets in peripheral blood from patients with pSS (n=45), SLE (n=29) and secondary SS associated with SLE (SLE/SS) (n=14) with low disease activity or in clinical remission, and sex-matched healthy controls (n=31), was performed using flow cytometry. Data were analysed using supervised machine learning (balanced random forest, sparse partial least squares discriminant analysis), logistic regression and multiple t-tests. Patients were stratified by k-means clustering, and clinical trajectory analysis. RESULTS: Patients with pSS and SLE had a similar immunological architecture despite having different clinical presentations and prognosis. K-means cluster analysis of the combined pSS, SLE and SLE/SS patient cohorts identified two endotypes characterized by distinct immune-cell profiles which spanned patient diagnoses. Logistic regression and machine learning models identified a signature of eight T-cell subsets that differentiated between the two endotypes with high accuracy (AUC=0.9979). Baseline and five-year clinical trajectory analysis identified differential damage scores and disease activity between the two endotypes. CONCLUSION: An immune-cell toolkit could differentiate patients across diseases with high accuracy for targeted therapeutic approaches
    • …
    corecore