692 research outputs found

    Quantum rotor description of the Mott-insulator transition in the Bose-Hubbard model

    Full text link
    We present the novel approach to the Bose-Hubbard model using the U(1)\mathrm{U}(1) quantum rotor description. The effective action formalism allows us to formulate a problem in the phase only action and obtain an analytical formulas for the critical lines. We show that the nontrivial U(1)\mathrm{U}(1) phase field configurations have an impact on the phase diagrams. The topological character of the quantum field is governed by terms of the integer charges - winding numbers. The comparison presented results to recently obtained quantum Monte Carlo numerical calculations suggests that the competition between quantum effects in strongly interacting boson systems is correctly captured by our model.Comment: accepted to PR

    Bis[5-oxo-4,5-dihydro-8H-2-azonia-4,8,9-trizabicyclo[4.3.0]nona-2,6,9(1)-triene] sulfate

    Get PDF
    In the crystal structure of the title compound, 2C5H5N4O+·SO4 2−, N—H⋯O hydrogen bonds assemble the mol­ecules into a two-dimensional network structure parallel to the cb plane. The S atom of the sulfate ion lies on a special position on a twofold axis

    Preventing Pneumonia Through Early Mobilization of Critically Ill Adults

    Get PDF
    The purpose of this critically appraised topic (CAT) is to investigate early mobilization and its effect on preventing pneumonia in adults in the intensive care unit (ICU). The final portfolio contains four research articles from both national and international journals. Study designs included two meta-analyses, one case series, and one retrospective study. All four of the articles specifically described the effects of early mobilization on individuals in the hospital and ICU and showed positive results in reducing the likelihood of developing pneumonia. This CAT will be used to draft new practice guidelines for mentoring new managers in both occupational therapy and physical therapy

    nu=1/2 quantum Hall effect in the Aharonov-Casher geometry in a mesoscopic ring

    Full text link
    We study the effect of an electric charge in the middle of a ring of electrons in a magnetic field such as ν=1/2\nu = 1/2. In the absence of the central charge, a residual current should appear due to an Aharanov-Bohm effect. As the charge varies, periodic currents should appear in the ring. We evaluate the amplitude of these currents, as well as their period as the central charge varies. The presence of these currents should be a direct signature of the existence of a statistical gauge field in the ν=1/2\nu=1/2 quantum Hall effect. Numerical diagonalizations for a small number of electrons on the sphere are also carried out. The numerical results up to 9 electrons are qualitatively consistent with the mean field picture.Comment: 23 pages,14 included postscript figures, submitted to Phys. Rev.

    Interference effects in isolated Josephson junction arrays with geometric symmetries

    Full text link
    As the size of a Josephson junction is reduced, charging effects become important and the superconducting phase across the link turns into a periodic quantum variable. Isolated Josephson junction arrays are described in terms of such periodic quantum variables and thus exhibit pronounced quantum interference effects arising from paths with different winding numbers (Aharonov-Casher effects). These interference effects have strong implications for the excitation spectrum of the array which are relevant in applications of superconducting junction arrays for quantum computing. The interference effects are most pronounced in arrays composed of identical junctions and possessing geometric symmetries; they may be controlled by either external gate potentials or by adding/removing charge to/from the array. Here we consider a loop of N identical junctions encircling one half superconducting quantum of magnetic flux. In this system, the ground state is found to be non-degenerate if the total number of Cooper pairs on the array is divisible by N, and doubly degenerate otherwise (after the stray charges are compensated by the gate voltages).Comment: 9 pages, 6 figure

    Topics in Quantum Computers

    Full text link
    I provide an introduction to quantum computers, describing how they might be realized using language accessible to a solid state physicist. A listing of the minimal requirements for creating a quantum computer is given. I also discuss several recent developments in the area of quantum error correction, a subject of importance not only to quantum computation, but also to some aspects of the foundations of quantum theory.Comment: 22 pages, Latex, 1 eps figure, Paper to be published in "Mesoscopic Electron Transport", edited by L. Kowenhoven, G. Schoen and L. Sohn, NATO ASI Series E, Kluwer Ac. Publ., Dordrecht. v2: typos in refrences fixe
    corecore