25,587 research outputs found
Characterizing the nature of Fossil Groups with XMM
We present an X-ray follow-up, based on XMM plus Chandra, of six Fossil Group
(FG) candidates identified in our previous work using SDSS and RASS data. Four
candidates (out of six) exhibit extended X-ray emission, confirming them as
true FGs. For the other two groups, the RASS emission has its origin as either
an optically dull/X-ray bright AGN, or the blending of distinct X-ray sources.
Using SDSS-DR7 data, we confirm, for all groups, the presence of an r-band
magnitude gap between the seed elliptical and the second-rank galaxy. However,
the gap value depends, up to 0.5mag, on how one estimates the seed galaxy total
flux, which is greatly underestimated when using SDSS (relative to Sersic)
magnitudes. This implies that many FGs may be actually missed when using SDSS
data, a fact that should be carefully taken into account when comparing the
observed number densities of FGs to the expectations from cosmological
simulations. The similarity in the properties of seed--FG and non-fossil
ellipticals, found in our previous study, extends to the sample of X-ray
confirmed FGs, indicating that bright ellipticals in FGs do not represent a
distinct population of galaxies. For one system, we also find that the velocity
distribution of faint galaxies is bimodal, possibly showing that the system
formed through the merging of two groups. This undermines the idea that all
selected FGs form a population of true fossils.Comment: 9 pages, 3 figures. Submitted 01/12/2011 to MNRAS, referee report
received 21/02/2012, accepted 22/02/201
Non-linear Poisson-Boltzmann Theory for Swollen Clays
The non-linear Poisson-Boltzmann equation for a circular, uniformly charged
platelet, confined together with co- and counter-ions to a cylindrical cell, is
solved semi-analytically by transforming it into an integral equation and
solving the latter iteratively. This method proves efficient, robust, and can
be readily generalized to other problems based on cell models, treated within
non-linear Poisson-like theory. The solution to the PB equation is computed
over a wide range of physical conditions, and the resulting osmotic equation of
state is shown to be in fair agreement with recent experimental data for
Laponite clay suspensions, in the concentrated gel phase.Comment: 13 pages, 4 postscript figure
Uniform semiclassical approximation in quantum statistical mechanics
We present a simple method to deal with caustics in the semiclassical
approximation to the partition function of a one-dimensional quantum system.
The procedure, which makes use of complex trajectories, is applied to the
quartic double-well potential.Comment: 5 pages, 1 figure, Latex. Contribution to the Proceedings of the XXI
Brazilian National Meeting on Particles and Fields (Sao Lourenco, October
23-27, 2000
The Role of Fermions in Bubble Nucleation
We present a study of the role of fermions in the decay of metastable states
of a scalar field via bubble nucleation. We analyze both one and
three-dimensional systems by using a gradient expansion for the calculation of
the fermionic determinant. The results of the one-dimensional case are compared
to the exact results of previous work.Comment: 15 pages, revtex, 9 figure
Morphology of low-redshift compact galaxy clusters I. Shapes and radial profiles
The morphology of clusters of galaxies may be described with a set of
parameters which contain information about the formation and evolutionary
history of these systems. In this paper we present a preliminary study of the
morphological parameters of a sample of 28 compact Abell clusters extracted
from DPOSS data. The morphology of galaxy clusters is parameterized by their
apparent ellipticity, position angle of the major axis, centre coordinates,
core radius and beta-model power law index. Our procedure provides estimates of
these parameters by simultaneously fitting them all, overcoming some of the
difficulties induced by sparse data and low number statistics typical of this
kind of analysis. The cluster parameters were fitted in a 3 x 3 h^-2 sqMpc
region, measuring the background in a 2 <R< 2.5 h^-1Mpc annulus. We also
explore the correlations between shape and profile parameters and other cluster
properties. One third of this compact cluster sample has core radii smaller
than 50 h^-1 kpc, i.e. near the limit that our data allow us to resolve,
possibly consistent with cusped models. The remaining clusters span a broad
range of core radii up to 750 h^-1 kpc. More than 80 per cent of this sample
has ellipticity higher than 0.2. The alignment between the cluster and the
major axis of the dominant galaxy is confirmed, while no correlation is
observed with other bright cluster members. No significant correlation is found
between cluster richness and ellipticity. Instead, cluster richness is found to
correlate, albeit with large scatter, with the cluster core radius.[abridged]Comment: 23 pages, 17 figures, accepted for publication in MNRAS. Full paper
including full resolution figures 2 and 9 at
http://www.eso.org/~vstrazzu/P/ME1030fv.pd
- …