1,148 research outputs found
A self-consistent Hartree-Fock approach for interacting bosons in optical lattices
A theoretical study of interacting bosons in a periodic optical lattice is
presented. Instead of the commonly used tight-binding approach (applicable near
the Mott insulating regime of the phase diagram), the present work starts from
the exact single-particle states of bosons in a cubic optical lattice,
satisfying the Mathieu equation, an approach that can be particularly useful at
large boson fillings. The effects of short-range interactions are incorporated
using a self-consistent Hartree-Fock approximation, and predictions for
experimental observables such as the superfluid transition temperature,
condensate fraction, and boson momentum distribution are presented.Comment: 12 pages, 15 figure file
Induced p-wave superfluidity in strongly interacting imbalanced Fermi gases
The induced interaction among the majority spin species, due to the presence
of the minority species, is computed for the case of a population-imbalanced
resonantly-interacting Fermi gas. It is shown that this interaction leads to an
instability, at low temperatures, of the recently observed polaron Fermi liquid
phase of strongly imbalanced Fermi gases to a p-wave superfluid state. We find
that the associated transition temperature, while quite small in the weakly
interacting BCS regime, is experimentally accessible in the strongly
interacting unitary regime.Comment: Published versio
Observation of Vortex Pinning in Bose-Einstein Condensates
We report the observation of vortex pinning in rotating gaseous Bose-Einstein
condensates (BEC). The vortices are pinned to columnar pinning sites created by
a co-rotating optical lattice superimposed on the rotating BEC. We study the
effects of two different types of optical lattice, triangular and square. With
both geometries we see an orientation locking between the vortex and the
optical lattices. At sufficient intensity the square optical lattice induces a
structural cross-over in the vortex lattice.Comment: 4 pages, 6 figures. Replaced by final version to appear in Phys. Rev.
Let
Vortex Lattice Inhomogeneity in Spatially Inhomogeneous Superfluids
A trapped degenerate Bose gas exhibits superfluidity with spatially
nonuniform superfluid density. We show that the vortex distribution in such a
highly inhomogeneous rotating superfluid is nevertheless nearly uniform. The
inhomogeneity in vortex density, which diminishes in the rapid-rotation limit,
is driven by the discrete way vortices impart angular momentum to the
superfluid. This effect favors highest vortex density in regions where the
superfluid density is most uniform (e.g., the center of a harmonically trapped
gas). A striking consequence of this is that the boson velocity deviates from a
rigid-body form exhibiting a radial-shear flow past the vortex lattice.Comment: 5 RevTeX pgs,2 figures, published versio
Induced superfluidity of imbalanced Fermi gases near unitarity
The induced intraspecies interactions among the majority species, mediated by
the minority species, is computed for a population-imbalanced two-component
Fermi gas. Although the Feshbach-resonance mediated interspecies interaction is
dominant for equal populations, leading to singlet s-wave pairing, we find that
in the strongly imbalanced regime the induced intraspecies interaction leads to
p-wave pairing and superfluidity of the majority species. Thus, we predict that
the observed spin-polaron Fermi liquid state in this regime is unstable to
p-wave superfluidity, in accordance with the results of Kohn and Luttinger,
below a temperature that, near unitarity, we find to be within current
experimental capabilities. Possible experimental signatures of the p-wave state
using radio-frequency spectroscopy as well as density-density correlations
after free expansion are presented.Comment: 15 pages, 13 figures, submitted to Phys. Rev.
Atom-molecule coherence in a one-dimensional system
We study a model of one-dimensional fermionic atoms that can bind in pairs to
form bosonic molecules. We show that at low energy, a coherence develops
between the molecule and fermion Luttinger liquids. At the same time, a gap
opens in the spin excitation spectrum. The coherence implies that the order
parameters for the molecular Bose-Einstein Condensation and the atomic BCS
pairing become identical. Moreover, both bosonic and fermionic charge density
wave correlations decay exponentially, in contrast with a usual Luttinger
liquid. We exhibit a Luther-Emery point where the systems can be described in
terms of noninteracting pseudofermions. At this point, we provide closed form
expressions for the density-density response functions.Comment: 5 pages, no figures, Revtex 4; (v2) added a reference to
cond-mat/0505681 where related results are reported; (v3) Expression of
correlation functions given in terms of generalized hypergeometric function
Inhomogeneous superconducting states of mesoscopic thin-walled cylinders in external magnetic fields
We theoretically investigate the appearance of spatially modulated superconducting states in mesoscopic superconducting thin-wall cylinders in a magnetic field at low temperatures. Quantization of the electron motion around the circumference of the cylinder leads to a discontinuous evolution of the spatial modulation of the superconducting order parameter along the transition line Tc(H). We show that this discontinuity leads to the nonmonotonic behavior of the specific heat jump at the onset of superconductivity as a function of temperature and field. We argue that this geometry provides an excellent opportunity to directly and unambiguously detect distinctive signatures of the Fulde-Ferrell-Larkin-Ovchinnikov modulation of the superconducting order. © 2013 American Physical Society
Trapped imbalanced fermionic superfluids in one dimension: A variational approach
We propose and analyze a variational wave function for a population-imbalanced one-dimensional Fermi gas that allows for Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) type pairing correlations among the two fermion species, while also accounting for the harmonic confining potential. In the strongly interacting regime, we find large spatial oscillations of the order parameter, indicative of an FFLO state. The obtained density profiles versus imbalance are consistent with recent experimental results as well as with theoretical calculations based on combining Bethe ansatz with the local density approximation. Our variational wave function displays no signature of the FFLO state in the densities of the two fermion species. Nonetheless, the oscillations of the order parameter appear in density-density correlations, both in situ and after free expansion. Furthermore, above a critical polarization, the value of which depends on the interaction, we find the unpaired Fermi-gas state to be energetically more favorable
- …