809 research outputs found

    Periodic orbit quantization of the Sinai billiard in the small scatterer limit

    Get PDF
    We consider the semiclassical quantization of the Sinai billiard for disk radii R small compared to the wave length 2 pi/k. Via the application of the periodic orbit theory of diffraction we derive the semiclassical spectral determinant. The limitations of the derived determinant are studied by comparing it to the exact KKR determinant, which we generalize here for the A_1 subspace. With the help of the Ewald resummation method developed for the full KKR determinant we transfer the complex diffractive determinant to a real form. The real zeros of the determinant are the quantum eigenvalues in semiclassical approximation. The essential parameter is the strength of the scatterer c=J_0(kR)/Y_0(kR). Surprisingly, this can take any value between plus and minus infinity within the range of validity of the diffractive approximation kR <<4. We study the statistics exhibited by spectra for fixed values of c. It is Poissonian for |c|=infinity, provided the disk is placed inside a rectangle whose sides obeys some constraints. For c=0 we find a good agreement of the level spacing distribution with GOE, whereas the form factor and two-point correlation function are similar but exhibit larger deviations. By varying the parameter c from 0 to infinity the level statistics interpolates smoothly between these limiting cases.Comment: 17 pages LaTeX, 5 postscript figures, submitted to J. Phys. A: Math. Ge

    Escape from noisy intermittent repellers

    Full text link
    Intermittent or marginally-stable repellers are commonly associated with a power law decay in the survival fraction. We show here that the presence of weak additive noise alters the spectrum of the Perron - Frobenius operator significantly giving rise to exponential decays even in systems that are otherwise regular. Implications for ballistic transport in marginally stable miscrostructures are briefly discussed.Comment: 3 ps figures include

    On the duality between periodic orbit statistics and quantum level statistics

    Full text link
    We discuss consequences of a recent observation that the sequence of periodic orbits in a chaotic billiard behaves like a poissonian stochastic process on small scales. This enables the semiclassical form factor Ksc(τ)K_{sc}(\tau) to agree with predictions of random matrix theories for other than infinitesimal τ\tau in the semiclassical limit.Comment: 8 pages LaTe

    Lyapunov exponents and anomalous diffusion of a Lorentz gas with infinite horizon using approximate zeta functions

    Full text link
    We compute the Lyapunov exponent, generalized Lyapunov exponents and the diffusion constant for a Lorentz gas on a square lattice, thus having infinite horizon. Approximate zeta functions, written in terms of probabilities rather than periodic orbits, a re used in order to avoid the convergence problems of cycle expansions. The emphasis is on the relation between the analytic structure of the zeta function, where a branch cut plays an important role, and the asymptotic dynamics of the system. We find a diverging diffusion constant D(t)logtD(t) \sim \log t and a phase transition for the generalized Lyapunov exponents.Comment: 14 pages LaTeX, figs 2-3 on .uu file, fig 1 available from autho

    Stability ordering of cycle expansions

    Full text link
    We propose that cycle expansions be ordered with respect to stability rather than orbit length for many chaotic systems, particularly those exhibiting crises. This is illustrated with the strong field Lorentz gas, where we obtain significant improvements over traditional approaches.Comment: Revtex, 5 incorporated figures, total size 200

    Pseudoacromegaly: A Differential Diagnostic Problem for Acromegaly With a Genetic Solution.

    Get PDF
    Acromegaly is usually not a difficult condition to diagnose once the possibility of this disease has been raised. However, a few conditions present with some aspects of acromegaly or gigantism but without growth hormone (GH) excess. Such cases are described as "pseudoacromegaly" or "acromegaloidism". Here we describe a female patient investigated for GH excess at 10 years of age for tall stature since infancy (height and weight > +3 standard deviations) and typical acromegalic features, including large hands/feet, large jaw, tongue, hoarse deep voice, and headache. Results of radiography of the sella turcica and GH response at an oral glucose tolerance test and insulin-arginine- thyrotrophin-luteinizing hormone-releasing hormone test were normal. Ethinylestradiol and medroxyprogesterone were given for 2 years; this successfully stopped further height increase. Although the patient's growth rate plateaued, coarsening of the facial features and acral enlargement also led to investigations for suspicion of acromegaly at 23 and 36 years of age, both with negative results. On referral at the age of 49 years, she had weight gain, sweating, sleep apnea, headaches, joint pain, and enlarged tongue. Endocrine assessment again showing normal GH axis was followed by genetic testing with a macrocephaly/overgrowth syndrome panel. A denovo mutation in the NSD1 gene (c.6605G>C; p.Cys2202Ser) was demonstrated. Mutations affecting the same cysteine residue have been identified in patients with Sotos syndrome. In summary, Sotos syndrome and other overgrowth syndromes can mimic the clinical manifestations of acromegaly or gigantism. Genetic assessment could be helpful in these cases

    Accelerating cycle expansions by dynamical conjugacy

    Full text link
    Periodic orbit theory provides two important functions---the dynamical zeta function and the spectral determinant for the calculation of dynamical averages in a nonlinear system. Their cycle expansions converge rapidly when the system is uniformly hyperbolic but greatly slowed down in the presence of non-hyperbolicity. We find that the slow convergence can be associated with singularities in the natural measure. A properly designed coordinate transformation may remove these singularities and results in a dynamically conjugate system where fast convergence is restored. The technique is successfully demonstrated on several examples of one-dimensional maps and some remaining challenges are discussed

    Anomalous Diffusion in Infinite Horizon Billiards

    Full text link
    We consider the long time dependence for the moments of displacement < |r|^q > of infinite horizon billiards, given a bounded initial distribution of particles. For a variety of billiard models we find ~ t^g(q) (up to factors of log t). The time exponent, g(q), is piecewise linear and equal to q/2 for q2. We discuss the lack of dependence of this result on the initial distribution of particles and resolve apparent discrepancies between this time dependence and a prior result. The lack of dependence on initial distribution follows from a remarkable scaling result that we obtain for the time evolution of the distribution function of the angle of a particle's velocity vector.Comment: 11 pages, 7 figures Submitted to Physical Review
    corecore