321 research outputs found
Periodic and Aperiodic Bunching in the Addition Spectra of Quantum Dot
We study electron addition spectra of quantum dots in a broad range of
electron occupancies starting from the first electron. Spectra for dots
containing <200 electrons reveal a surprising feature. Electron additions are
not evenly spaced in gate voltage. Rather, they group into bunches. With
increasing electron number the bunching evolves from occurring randomly to
periodically at about every fifth electron. The periodicity of the bunching and
features in electron tunneling rates suggest that the bunching is associated
with electron additions into spatially distinct regions within the dots.Comment: 4 pages, 2 figures. Submitted to PR
Disorder and interaction induced pairing in the addition spectra of quantum dots
We have investigated numerically the electron addition spectra in quantum
dots containing a small number (N < 11) of interacting electrons, in presence
of strong disorder. For a short-range Coulomb repulsion, we find regimes in
which two successive electrons enter the dot at very close values of the
chemical potential. In the strongly correlated regime these close additions, or
pairing, are associated with electrons tunneling into distinct electron puddles
within the dot. We discuss the tunneling rates at pairing, and we argue that
our results are related to a phenomenon known as "bunching", recently observed
experimentally.Comment: 4 pages, 5 figure
Localization in Artificial Disorder - Two Coupled Quantum Dots
Using Single Electron Capacitance Spectroscopy, we study electron additions
in quantum dots containing two potential minima separated by a shallow barrier.
Analysis of addition spectra in magnetic field allows us to distinguish whether
electrons are localized in either potential minimum or delocalized over the
entire dot. We demonstrate that high magnetic field abruptly splits up a
low-density droplet into two smaller fragments, each residing in a potential
minimum. An unexplained cancellation of electron repulsion between electrons in
these fragments gives rise to paired electron additions.Comment: submitted to Phys.Rev.Let
Topographic Mapping of the Quantum Hall Liquid using a Few-Electron Bubble
A scanning probe technique was used to obtain a high-resolution map of the
random electrostatic potential inside the quantum Hall liquid. A sharp metal
tip, scanned above a semiconductor surface, sensed charges in an embedded
two-dimensional electron gas. Under quantum Hall effect conditions, applying a
positive voltage to the tip locally enhanced the 2D electron density and
created a ``bubble'' of electrons in an otherwise unoccupied Landau level. As
the tip scanned along the sample surface, the bubble followed underneath. The
tip sensed the motions of single electrons entering or leaving the bubble in
response to changes in the local 2D electrostatic potential.Comment: 4 pages, 3 JPG figures, Revtex. For additional info and AVI movies,
visit http://electron.mit.edu/st
A New Class of Resonances at the Edge of the Two Dimensional Electron Gas
We measure the frequency dependent capacitance of a gate covering the edge
and part of a two-dimensional electron gas in the quantum Hall regime. In
applying a positive gate bias, we create a metallic puddle under the gate
surrounded by an insulating region. Charging of the puddle occurs via electron
tunneling from a metallic edge channel. Analysis of the data allows direct
extraction of this tunneling conductance. Novel conductance resonances appear
as a function of gate bias. Samples with gates ranging from 1-170~m along
the edge display strikingly similar resonance spectra. The data suggest the
existence of unexpected structure, homogeneous over long length scales, at the
sample edge.Comment: 13 pages (revtex) including 4 figure
Imaging Transport Resonances in the Quantum Hall Effect
We use a scanning capacitance probe to image transport in the quantum Hall
system. Applying a DC bias voltage to the tip induces a ring-shaped
incompressible strip (IS) in the 2D electron system (2DES) that moves with the
tip. At certain tip positions, short-range disorder in the 2DES creates a
quantum dot island in the IS. These islands enable resonant tunneling across
the IS, enhancing its conductance by more than four orders of magnitude. The
images provide a quantitative measure of disorder and suggest resonant
tunneling as the primary mechanism for transport across ISs.Comment: 4 pages, 4 figures, submitted to PRL. For movies and additional
infomation, see http://electron.mit.edu/scanning/; Added scale bars to
images, revised discussion of figure 3, other minor change
Two-electron state in a disordered 2D island: pairing caused by the Coulomb repulsion
We show the existence of bound two-electron states in an almost depleted
two-dimensional island. These two-electron states are carried by special
compact configurations of four single-electron levels. The existence of these
states does not require phonon mediation, and is facilitated by the
disorder-induced potential relief and by the electron-electron repulsion only.
The density of two-electron states is estimated and their evolution with the
magnetic field is discussed.Comment: 9 pages, 1 fi
- …