178 research outputs found
Dynamical Symmetry Enlargement Versus Spin-Charge Decoupling in the One-Dimensional SU(4) Hubbard Model
We investigate dynamical symmetry enlargement in the half-filled SU(4)
Hubbard chain using non-perturbative renormalization group and Quantum Monte
Carlo techniques. A spectral gap is shown to open for arbitrary Coulombic
repulsion . At weak coupling, , a SO(8) symmetry between
charge and spin-orbital excitations is found to be dynamically enlarged at low
energy. At strong coupling, , the charge degrees of freedom
dynamically decouple and the resulting effective theory in the spin-orbital
sector is that of the SO(6) antiferromagnetic Heisenberg model. Both regimes
exhibit spin-Peierls order. However, although spin-orbital excitations are
in the SO(6) regime they are in the SO(8) one. The
cross-over between these regimes is discussed.Comment: 4 pages, 2 figure
Zero-variance principle for Monte Carlo algorithms
We present a general approach to greatly increase at little cost the
efficiency of Monte Carlo algorithms. To each observable to be computed we
associate a renormalized observable (improved estimator) having the same
average but a different variance. By writing down the zero-variance condition a
fundamental equation determining the optimal choice for the renormalized
observable is derived (zero-variance principle for each observable separately).
We show, with several examples including classical and quantum Monte Carlo
calculations, that the method can be very powerful.Comment: 9 pages, Latex, to appear in Phys. Rev. Let
Exact Monte Carlo time dynamics in many-body lattice quantum systems
On the base of a Feynman-Kac--type formula involving Poisson stochastic
processes, recently a Monte Carlo algorithm has been introduced, which
describes exactly the real- or imaginary-time evolution of many-body lattice
quantum systems. We extend this algorithm to the exact simulation of
time-dependent correlation functions. The techniques generally employed in
Monte Carlo simulations to control fluctuations, namely reconfigurations and
importance sampling, are adapted to the present algorithm and their validity is
rigorously proved. We complete the analysis by several examples for the
hard-core boson Hubbard model and for the Heisenberg model
Equilibrium Sampling From Nonequilibrium Dynamics
We present some applications of an Interacting Particle System (IPS)
methodology to the field of Molecular Dynamics. This IPS method allows several
simulations of a switched random process to keep closer to equilibrium at each
time, thanks to a selection mechanism based on the relative virtual work
induced on the system. It is therefore an efficient improvement of usual
non-equilibrium simulations, which can be used to compute canonical averages,
free energy differences, and typical transitions paths
Insulating charge density wave for a half-filled SU(N) Hubbard model with an attractive on-site interaction in one dimension
We study a one-dimensional SU(N) Hubbard model with an attractive on-site
interaction and at half-filling on the bipartite lattice using
density-matrix renormalization-group method and a perturbation theory. We find
that the ground state of the SU(N) Hubbard model is a charge density wave state
with two-fold degeneracy. All the excitations are found to be gapful, resulting
in an insulating ground state, on contrary to that in the SU(2) case. Moreover,
the charge gap is equal to the Cooperon gap, which behaves as
in the strong coupling regime. However, the spin gap and the
quasiparticle gap as well open exponentially in the weak coupling
region, while in the strong coupling region, they linearly depend on such
that and .Comment: 7 pages, 7 figure
A planar diagram approach to the correlation problem
We transpose an idea of 't Hooft from its context of Yang and Mills' theory
of strongly interacting quarks to that of strongly correlated electrons in
transition metal oxides and show that a Hubbard model of N interacting electron
species reduces, to leading orders in N, to a sum of almost planar diagrams.
The resulting generating functional and integral equations are very similar to
those of the FLEX approximation of Bickers and Scalapino. This adds the Hubbard
model at large N to the list of solvable models of strongly correlated
electrons.
PACS Numbers: 71.27.+a 71.10.-w 71.10.FdComment: revtex, 5 pages, with 3 eps figure
Phase diagram of a 1 dimensional spin-orbital model
We study a 1 dimensional spin-orbital model using both analytical and
numerical methods. Renormalization group calculations are performed in the
vicinity of a special integrable point in the phase diagram with SU(4)
symmetry. These indicate the existence of a gapless phase in an extended region
of the phase diagram, missed in previous studies. This phase is SU(4) invariant
at low energies apart from the presence of different velocities for spin and
orbital degrees of freedom. The phase transition into a gapped dimerized phase
is in a generalized Kosterlitz-Thouless universality class. The phase diagram
of this model is sketched using the density matrix renormalization group
technique.Comment: 11 pages, 5 figures, new references adde
Effect of Hund coupling in the one-dimensional SU(4) Hubbard model
The one-dimensional SU(4) Hubbard model perturbed by Hund coupling is
studied, away from half-filling, by means of renormalization group and
bosonization methods. A spectral gap is always present in the spin-orbital
sector irrespective of the magnitude of the Coulomb repulsion. We further
distinguish between two qualitatively different regimes. At small Hund
coupling, we find that the symmetry of the system is dynamically enlarged to
SU(4) at low energy with the result of {\it coherent} spin-orbital excitations.
When the charge sector is not gapped, a superconducting instability is shown to
exist. At large Hund coupling, the symmetry is no longer enlarged to SU(4) and
the excitations in the spin sector become {\it incoherent}. Furthermore, the
superconductivity can be suppressed in favor of the conventional charge density
wave state.Comment: 10 pages, 1 figur
A note on density correlations in the half-filled Hubbard model
We consider density-density correlations in the one-dimensional Hubbard model
at half filling. On intuitive grounds one might expect them to exhibit an
exponential decay. However, as has been noted recently, this is not obvious
from the Bethe Ansatz/conformal field theory (BA/CFT) approach. We show that by
supplementing the BA/CFT analysis with simple symmetry arguments one can easily
prove that correlations of the lattice density operators decay exponentially.Comment: 3 pages, RevTe
Acquired resistance of human T cells to sulfasalazine: stability of the resistant phenotype and sensitivity to non-related DMARDs.
2.5 weeks) resumption of SSZ resistance and ABCG2 expression as in the original CEM/SSZ cells. CEM/SSZ cells displayed diminished sensitivity to the DMARDs leflunomide (5.1-fold) and methotrexate (1.8-fold), were moderately more sensitive (1.6-2.0 fold) to cyclosporin A and chloroquine, and markedly more sensitive (13-fold) to the glucocorticoid dexamethasone as compared with parental CEM cells. CONCLUSION: The drug efflux pump ABCG2 has a major role in conferring resistance to SSZ. The collateral sensitivity of SSZ resistant cells for some other (non-related) DMARDs may provide a further rationale for sequential mono- or combination therapies with distinct DMARDs upon decreased efficacy of SSZ
- …