293 research outputs found
Diabetes and reactivity of isolated human saphenous vein
Helical strips of saphenous veins from diabetic ( n =8) and non-diabetic ( n = 18) humans were studied in vivo for their responsiveness to several vasoactive agents. Following application of passive force (˜20·0 mN), venous strips from non-diabetic humans often developed spontaneous phasic contractile activity (12 out of 18 patients; 2–5 contractions/min). These intrinsic changes in force were seen in venous strips from only one diabetic patient. The phasic contractions were not altered by treatment with phentolamine, whereas the calcium channel blocker, D-600, and calcium-free solution (1·0 mM EGTA) inhibited the phasic contractions. Saphenous veins from diabetic patients developed less maximal, active tension in response to norepinephrine than those from non-diabetic patients. Contractile responses to serotonin, angiotensin II, and elevated potassium concentration in saphenous veins from diabetic patients were not different from those in veins from non-diabetic patients. These observations demonstrate attenuated development of active tension in response to alpha-adrenergic receptor activation and reduced spontaneous contractile activity in venous smooth muscle from diabetic patients.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74640/1/j.1475-097X.1984.tb00136.x.pd
Improving the lipid profile in hypercholesterolemia-induced rabbit by supplementation of germinated brown rice.
It is imperative that there be a diet designed specifically to improve lipid profile in order to impede the progress of atherosclerosis. Because rice is a staple food in Asia, it will be chosen as the diet of interest. This study sets out to discover whether consumption of different processed rice diets may result in a change of the lipid profile. The experiment was done on male New Zealand white rabbits after 10 weeks of treatment with diet containing 0.5% cholesterol. The experimental diets include white rice (WR), brown rice (BR), and germinated brown rice (GBR). Among them, rabbits fed a GBR diet demonstrated significantly lower levels of total cholesterol (TC), low-density lipoprotein (LDL), LDL/HDL, and atherogenic index (AI) and a higher level of high-density lipoprotein (HDL). Results from atherosclerotic plaque assessment further support the findings. The level of malondialdehyde (MDA), which acts as an indicator for oxidative stress, was also reduced by GBR diet. The positive change in lipid profile in the rabbits fed GBR appeared to correspond with the higher amounts of γ-oryzanol, tocopherol, and monounsaturated fatty acid (MUFA) content
Survivin, Survivin-2B, and Survivin-deItaEx3 expression in medulloblastoma: biologic markers of tumour morphology and clinical outcome
Survivin is an apoptotic inhibitor that is expressed at high levels in a variety of malignancies. Survivin has four known alternative splice forms (Survivin, Survivin-2B, Survivin-deltaEx3, and Survivin-3B), and the recent literature suggests that these splice variants have unique functions and subcellular localisation patterns. We evaluated 19 fresh-frozen paediatric medulloblastomas for the expression of three Survivin isoforms by quantitative PCR. Survivin was most highly expressed when compared with normal cerebellar tissue. We also investigated Survivin protein expression in 40 paraffin-embedded paediatric medulloblastoma tumours by immunohistochemistry. We found a statistically significant association between the percentage of Survivin-positive cells and histologic subtype, with the large-cell-anaplastic variant expressing Survivin at higher levels than the classic subtype. We also found a statistically significant relationship between the percent of Survivin-positive cells in the tumours and clinical outcome, with higher levels of Survivin correlating with a worse prognosis. In summary, our study demonstrates a role for Survivin as a marker of tumour morphology and clinical outcome in medulloblastoma. Survivin may be a promising future prognostic tool and potential biologic target in this malignancy
Postnatal Expansion of the Pancreatic β-Cell Mass Is Dependent on Survivin
OBJECTIVE—Diabetes results from a deficiency of functional β-cells due to both an increase in β-cell death and an inhibition of β-cell replication. The molecular mechanisms responsible for these effects in susceptible individuals are mostly unknown. The objective of this study was to determine whether a gene critical for cell division and cell survival in cancer cells, survivin, might also be important for β-cells
Expression of cytoplasmic and nuclear Survivin in primary and secondary human glioblastoma
Clinically, human glioblastoma (GBM) may develop de novo or from a low-grade glioma (secondary GBM), and molecular alterations in the two pathways may differ. This study examined the status of Survivin expression and apoptosis in 30 primary and 26 secondary GBMs. Our results show that cytoplasmic Survivin positivity was significantly (P<0.001) more frequent in primary GBMs (83%) than that in secondary GBMs (46%). In addition, an inverse correlation of cytoplasmc Survivin positivity with GBM apoptotic index, and a positive association between cytoplasmic Survivin and size of the tumours were observed. These results suggest that cytoplasmic Survivin, via its antiapoptotic function, may be involved in the tumorigenesis of many primary GBMs, but only in a small fraction of secondary GBMs. Furthermore, the overall progression times from low-grade precursor lesions to secondary GBMs were significantly shorter (P<0.05) in cytoplasmic Survivin-positive cases (mean, 15.6 months) than those in Survivin-negative cases (mean, 23.8 moths), and the positive expression level of Survivin in cytoplasm was upregulated in most secondary GBMs when compared to matched pre-existing low-graded lesions. These results suggest that the increased accumulation of Survivin in the cytoplasm of more malignant glioma cells may prove to be a selective advantage, thus accelerating progression to a more aggressive phenotype
Perivascular Expression and Potent Vasoconstrictor Effect of Dynorphin A in Cerebral Arteries
BACKGROUND: Numerous literary data indicate that dynorphin A (DYN-A) has a significant impact on cerebral circulation, especially under pathophysiological conditions, but its potential direct influence on the tone of cerebral vessels is obscure. The aim of the present study was threefold: 1) to clarify if DYN-A is present in cerebral vessels, 2) to determine if it exerts any direct effect on cerebrovascular tone, and if so, 3) to analyze the role of κ-opiate receptors in mediating the effect. METHODOLOGY/PRINCIPAL FINDINGS: Immunohistochemical analysis revealed the expression of DYN-A in perivascular nerves of rat pial arteries as well as in both rat and human intraparenchymal vessels of the cerebral cortex. In isolated rat basilar and middle cerebral arteries (BAs and MCAs) DYN-A (1-13) and DYN-A (1-17) but not DYN-A (1-8) or dynorphin B (DYN-B) induced strong vasoconstriction in micromolar concentrations. The maximal effects, compared to a reference contraction induced by 124 mM K(+), were 115±6% and 104±10% in BAs and 113±3% and 125±9% in MCAs for 10 µM of DYN-A (1-13) and DYN-A (1-17), respectively. The vasoconstrictor effects of DYN-A (1-13) could be inhibited but not abolished by both the κ-opiate receptor antagonist nor-Binaltorphimine dihydrochloride (NORBI) and blockade of G(i/o)-protein mediated signaling by pertussis toxin. Finally, des-Tyr(1) DYN-A (2-13), which reportedly fails to activate κ-opiate receptors, induced vasoconstriction of 45±11% in BAs and 50±5% in MCAs at 10 µM, which effects were resistant to NORBI. CONCLUSION/SIGNIFICANCE: DYN-A is present in rat and human cerebral perivascular nerves and induces sustained contraction of rat cerebral arteries. This vasoconstrictor effect is only partly mediated by κ-opiate receptors and heterotrimeric G(i/o)-proteins. To our knowledge our present findings are the first to indicate that DYN-A has a direct cerebral vasoconstrictor effect and that a dynorphin-induced vascular action may be, at least in part, independent of κ-opiate receptors
Identification of Novel Functional Inhibitors of Acid Sphingomyelinase
We describe a hitherto unknown feature for 27 small drug-like molecules, namely functional inhibition of acid sphingomyelinase (ASM). These entities named FIASMAs (Functional Inhibitors of Acid SphingoMyelinAse), therefore, can be potentially used to treat diseases associated with enhanced activity of ASM, such as Alzheimer's disease, major depression, radiation- and chemotherapy-induced apoptosis and endotoxic shock syndrome. Residual activity of ASM measured in the presence of 10 µM drug concentration shows a bimodal distribution; thus the tested drugs can be classified into two groups with lower and higher inhibitory activity. All FIASMAs share distinct physicochemical properties in showing lipophilic and weakly basic properties. Hierarchical clustering of Tanimoto coefficients revealed that FIASMAs occur among drugs of various chemical scaffolds. Moreover, FIASMAs more frequently violate Lipinski's Rule-of-Five than compounds without effect on ASM. Inhibition of ASM appears to be associated with good permeability across the blood-brain barrier. In the present investigation, we developed a novel structure-property-activity relationship by using a random forest-based binary classification learner. Virtual screening revealed that only six out of 768 (0.78%) compounds of natural products functionally inhibit ASM, whereas this inhibitory activity occurs in 135 out of 2028 (6.66%) drugs licensed for medical use in humans
Neuroadaptations in Human Chronic Alcoholics: Dysregulation of the NF-κB System
Anna Ökvist is with Karolinska Institute, Sofia Johansson is with Karolinska Institute, Alexander Kuzmin is with Karolinska Institute, Igor Bazov is with Karolinska Institute, Roxana Merino-Martinez is with Karolinska Institute, Igor Ponomarev is with UT Austin, R. Dayne Mayfield is with UT Austin, R. Adron Harris is with UT Austin, Donna Sheedy is with University of Sydney, Therese Garrick is with University of Sydney, Clive Harper is with University of Sydney, Yasmin L. Hurd is with Mount Sinai School of Medicine, Lars Terenius is with Karolinska Institute, Tomas J. Ekström is with Karolinska Institute, Georgy Bakalkin is with Karolinska Institute and Uppsala University, Tatjana Yakovleva is with Karolinska Institute and Uppsala University.Background -- Alcohol dependence and associated cognitive impairments apparently result from neuroadaptations to chronic alcohol consumption involving changes in expression of multiple genes. Here we investigated whether transcription factors of Nuclear Factor-kappaB (NF-κB) family, controlling neuronal plasticity and neurodegeneration, are involved in these adaptations in human chronic alcoholics. Methods and Findings -- Analysis of DNA-binding of NF-κB (p65/p50 heterodimer) and the p50 homodimer as well as NF-κB proteins and mRNAs was performed in postmortem human brain samples from 15 chronic alcoholics and 15 control subjects. The prefrontal cortex involved in alcohol dependence and cognition was analyzed and the motor cortex was studied for comparison. The p50 homodimer was identified as dominant κB binding factor in analyzed tissues. NF-κB and p50 homodimer DNA-binding was downregulated, levels of p65 (RELA) mRNA were attenuated, and the stoichiometry of p65/p50 proteins and respective mRNAs was altered in the prefrontal cortex of alcoholics. Comparison of a number of p50 homodimer/NF-κB target DNA sites, κB elements in 479 genes, down- or upregulated in alcoholics demonstrated that genes with κB elements were generally upregulated in alcoholics. No significant differences between alcoholics and controls were observed in the motor cortex. Conclusions -- We suggest that cycles of alcohol intoxication/withdrawal, which may initially activate NF-κB, when repeated over years downregulate RELA expression and NF-κB and p50 homodimer DNA-binding. Downregulation of the dominant p50 homodimer, a potent inhibitor of gene transcription apparently resulted in derepression of κB regulated genes. Alterations in expression of p50 homodimer/NF-κB regulated genes may contribute to neuroplastic adaptation underlying alcoholism.This work was supported by grants from the AFA Forsäkring to AK, YLH, TJE and GB, the Research Foundation of the Swedish Alcohol Retail Monopoly (SRA) and Karolinska Institutet to AK, TJE and GB, and the Swedish Science Research Council and the Swedish National Drug Policy Coordinator to GB. The Australian Brain Donor Programs NSW Tissue Resource Centre was supported by The University of Sydney, National Health and Medical Research Council of Australia, Neuroscience Institute of Schizophrenia and Allied Disorders, National Institute of Alcohol Abuse and Alcoholism and NSW Department of Health.Waggoner Center for Alcohol and Addiction Researc
- …