4,913 research outputs found

    Altered microRNA and target gene expression related to Tetralogy of Fallot

    Get PDF
    MicroRNAs (miRNAs) play an important role in guiding development and maintaining function of the human heart. Dysregulation of miRNAs has been linked to various congenital heart diseases including Tetralogy of Fallot (TOF), which represents the most common cyanotic heart malformation in humans. Several studies have identified dysregulated miRNAs in right ventricular (RV) tissues of TOF patients. In this study, we profiled genome-wide the whole transcriptome and analyzed the relationship of miRNAs and mRNAs of RV tissues of a homogeneous group of 22 non-syndromic TOF patients. Observed profiles were compared to profiles obtained from right and left ventricular tissue of normal hearts. To reduce the commonly observed large list of predicted target genes of dysregulated miRNAs, we applied a stringent target prediction pipeline integrating probabilities for miRNA-mRNA interaction. The final list of disease-related miRNA-mRNA pairs comprises novel as well as known miRNAs including miR-1 and miR-133, which are essential to cardiac development and function by regulating KCNJ2, FBN2, SLC38A3 and TNNI1. Overall, our study provides additional insights into post-transcriptional gene regulation of malformed hearts of TOF patients

    Evaluation of Imprint and Multi-Level Dynamics in Ferroelectric Capacitors

    Get PDF
    Fluorite-structured ferroelectrics are one of the most promising material systems for emerging memory technologies. However, when integrated into electronic devices, these materials exhibit strong imprint effects that can lead to a failure during writing or retention operations. To improve the performance and reliability of these devices, it is cardinal to understand the physical mechanisms underlying the imprint during operation. In this work, the comparison of First-Order Reversal Curves measurements with a new gradual switching experimental approach named "Unipolar Reversal Curves" is used to analyze both the fluid imprint and the time-dependent imprint effects within a 10 nm-thick Hf0.5Zr0.5O2 capacitor. Interestingly, the application of delay times (ranging from 100 mu s up to 10 s) between the partial switching pulses of a Unipolar Reversal Curve sequence enables analysis of the connection between the two aforementioned imprint types. Based on these results, the study finally reports a unified physical interpretation of imprint in the context of a charge injection model, which explains both types of imprint and sheds light on the dynamics of multi-level polarization switching in ferroelectrics.Multi-level ferroelectric switching depends strongly on pulse timings. A hysteresis shift along the voltage axis ("imprint") occurs when a ferroelectric device is left in a particular state. Here, different pulse sequences are adopted to investigate and explain the contrasting effects of fluid (short time scales) and time-dependent imprint (long time scales) on multi-level switching in Hf0.5Zr0.5O2 capacitors. imag

    Herpes Simplex Virus 1 and Chlamydophila (Chlamydia) pneumoniae promote Ab 1-42 amyloid processing in murine astrocytes linking an infectious process to Alzheimer\u27s disease

    Get PDF
    Background: Several studies have suggested an infectious etiology for Alzheimer\u27s disease (AD). Previously, our laboratory identified Chlamydia pneumoniae (Cpn) from autopsied sporadic AD brains, as well as developed a BALB/c mouse model that demonstrated infection-induced amyloid plaques similar to those found in AD. Hypothesis: We propose that an additional pathogen such as herpes simplex virus type 1 (HSV1), also may be a contributing factor in toin the pathology seen in AD. HSV1, in addition to Cpn, may be triggering the abnormal cleavage of the beta amyloid precursor protein (bAPP) into Ab1-42 , thereby contributing to amyloid plaque formation. Our current study examines amyloid processing following infection of primary and C8-DIA murine astrocytes with Cpn and HSV1. Materials and Methods: Immunocytochemistry and western analysis was used to analyze the outcome of infection by these two pathogens. Results: Cpn infection resulted in an increase in cytoplasmic labeling of Ab 1-42 relative to uninfected cells, while increased nuclear labeling of Ab 1-42 was observed following HSV1 infection. Co-infections with Cpn and HSV1 resulted in amyloid labeling resembling that of HSV1 infection alone, though Ab 1-42 labeling appeared decreased specifically in Cpn-infected cells of the co-infected monolayers. Conclusions: These data suggest that infection of astrocytic cells by HSV1 and (Cpn) alter the processing of bAPP, thereby producing Ab1-42. Therefore, these studies, inaddition to the previous research reported by our laboratory, support an emerging linkage of the infectious processs to the neuropathology characteristic of Alzheimer\u27s disease.https://digitalcommons.pcom.edu/posters/1008/thumbnail.jp

    Immunohistological detection of Chlamydia pneumoniae in the Alzheimer's disease brain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sporadic late-onset Alzheimer's disease (AD) appears to evolve from an interplay between genetic and environmental factors. One environmental factor that continues to be of great interest is that of <it>Chlamydia pneumoniae </it>infection and its association with late-onset disease. Detection of this organism in clinical and autopsy samples has proved challenging using a variety of molecular and histological techniques. Our current investigation utilized immunohistochemistry with a battery of commercially available anti-<it>C. pneumoniae </it>antibodies to determine whether <it>C. pneumoniae </it>was present in areas typically associated with AD neuropathology from 5 AD and 5 non-AD control brains.</p> <p>Results</p> <p>Immunoreactivity for <it>C. pneumoniae </it>antigens was observed both intracellularly in neurons, neuroglia, endothelial cells, and peri-endothelial cells, and extracellularly in the frontal and temporal cortices of the AD brain with multiple <it>C. pneumoniae</it>-specific antibodies. This immunoreactivity was seen in regions of amyloid deposition as revealed by immunolabeling with two different anti-beta amyloid antibodies. Thioflavin S staining, overlaid with <it>C. pneumoniae </it>immunolabeling, demonstrated no direct co-localization of the organism and amyloid plaques. Further, the specificity of <it>C. pneumoniae </it>labeling of AD brain sections was demonstrated using <it>C. pneumoniae </it>antibodies pre-absorbed against amyloid β 1-40 and 1-42 peptides.</p> <p>Conclusions</p> <p>Anti-<it>C. pneumoniae </it>antibodies, obtained commercially, identified both typical intracellular and atypical extracellular <it>C. pneumoniae </it>antigens in frontal and temporal cortices of the AD brain. <it>C. pneumoniae</it>, amyloid deposits, and neurofibrillary tangles were present in the same regions of the brain in apposition to one another. Although additional studies are required to conclusively characterize the nature of Chlamydial immunoreactivity in the AD brain, these results further implicate <it>C. pneumoniae </it>infection with the pathogenesis of Alzheimer's disease.</p

    Induced pluripotent stem cells of patients with Tetralogy of Fallot reveal transcriptional alterations in cardiomyocyte differentiation

    Get PDF
    Patient-specific induced pluripotent stem cells (ps-iPSCs) and their differentiated cell types are a powerful model system to gain insight into mechanisms driving early developmental and disease-associated regulatory networks. In this study, we use ps-iPSCs to gain insights into Tetralogy of Fallot (TOF), which represents the most common cyanotic heart defect in humans. iPSCs were generated and further differentiated to cardiomyocytes (CMs) using standard methods from two well-characterized TOF patients and their healthy relatives serving as controls. Patient-specific expression patterns and genetic variability were investigated using whole genome and transcriptome sequencing data. We first studied the clonal mutational burden of the derived iPSCs. In two out of three iPSC lines of patient TOF-01, we found a somatic mutation in the DNA-binding domain of tumor suppressor P53, which was not observed in the genomic DNA from blood. Further characterization of this mutation showed its functional impact. For patient TOF-02, potential disease-relevant differential gene expression between and across cardiac differentiation was shown. Here, clear differences at the later stages of differentiation could be observed between CMs of the patient and its controls. Overall, this study provides first insights into the complex molecular mechanisms underlying iPSC-derived cardiomyocyte differentiation and its transcriptional alterations in TOF
    corecore