6,041 research outputs found

    Optical properties of current carrying molecular wires

    Full text link
    We consider several fundamental optical phenomena involving single molecules in biased metal-molecule-metal junctions. The molecule is represented by its highest occupied and lowest unoccupied molecular orbitals, and the analysis involves the simultaneous consideration of three coupled fluxes: the electronic current through the molecule, energy flow between the molecule and electron-hole excitations in the leads and the incident and/or emitted photon flux. Using a unified theoretical approach based on the non-equilibrium Green function method we derive expressions for the absorption lineshape (not an observable but a ueful reference for considering yields of other optical processes) and for the current induced molecular emission in such junctions. We also consider conditions under which resonance radiation can induce electronic current in an unbiased junction. We find that current driven molecular emission and resonant light induced electronic currents in single molecule junctions can be of observable magnitude under appropriate realizable conditions. In particular, light induced current should be observed in junctions involving molecular bridges that are characterized by strong charge transfer optical transitions. For observing current induced molecular emission we find that in addition to the familiar need to control the damping of molecular excitations into the metal substrate the phenomenon is also sensitive to the way in which the potential bias si distributed on the junction.Comment: 56 pages, 8 figures; submitted to JC

    Super Terror: The Complex Relationship Between Sequential Art and Real World Political Violence

    Get PDF
    While scholars have recognized that the media plays a very important role in the understanding of terrorism and other forms of political violence, alternative and popular forms of media (such as the Comic Strip, Graphic Novel, Cartoon, etc.) have not been examined as closely by social scientists. This research is concerned with the reaction by graphic narratives to events of terror and the graphic work as a way of influencing the public in its opinion of terror. The main piece examined is Alan Moore’s V for Vendetta which was made as a discussion of the justification of terror witch specific historical examples such as Guy Fawkes and political violence in Ireland. Another text that this paper explores is The 9/11 Report Graphic Adaptation that is a graphic work that was made in response to the September 11th terrorist attacks in an attempt to better educate the masses about the events leading up to the attack. In contrast to this, I will examine Paul Jenkin’s Marvel Civil War: Front Line, a superhero narrative which actively criticizes United States governmental policy post 9-11. This research also starts a discussion of visual codes in Geoff John’s Green Lantern series that shows and then counters different stereotypes of Arab Americans that resulted from the aftermath of September eleventh and the War on Terror

    Molecular transport junctions: Current from electronic excitations in the leads

    Full text link
    Using a model comprising a 2-level bridge connecting free electron reservoirs we show that coupling of a molecular bridge to electron-hole excitations in the leads can markedly effect the source-drain current through a molecular junction.In some cases, e.g. molecules that exhibit strong charge transfer transitions, the contribution from electron-hole excitations can exceed the Landauer elastic current and dominate the observed conduction.Comment: 4 pages, 2 figures, submitted to PR

    On-command enhancement of single molecule fluorescence using a gold nanoparticle as an optical nano-antenna

    Full text link
    We investigate the coupling of a single molecule to a single spherical gold nanoparticle acting as a nano-antenna. Using scanning probe technology, we position the particle in front of the molecule with nanometer accuracy and measure a strong enhancement of more than 20 times in the fluorescence intensity simultaneous to a 20-fold shortening of the excited state lifetime. Direct comparison with three-dimensional calculations allow us to decipher the contributions of the excitation enhancement, spontaneous emission modification, and quenching. Furthermore, we provide direct evidence for the role of the particle plasmon resonance in the modification of the molecular emission.Comment: 5 pages, 4 figures. submitted to Phys.Rev.Lett. 12/04/200

    Hydrogen peroxide filled poly(methyl methacrylate) microcapsules: potential oxygen delivery materials

    Get PDF
    This paper describes the synthesis of H2O2–H2O filled poly(methyl methacrylate) (PMMA) microcapsules as potential candidates for controlled O2 delivery. The microcapsules are prepared by a water-in-oil solvent emulsion and evaporation method. The results of this study describe the effect of process parameters on the characteristics of the microcapsules and on their in vitro performance. The size of the microcapsules, as determined from scanning electron microscopy, ranges from ∼5 to 30 μm and the size distribution is narrow. The microcapsules exhibit an internal morphology with entrapped H2O2–H2O droplets randomly distributed in the PMMA continuous phase. In vitro release studies of 4.5 wt% H2O2-loaded microcapsules show that ∼70% of the H2O2 releases in 24 h. This corresponds to a total O2 production of ∼12 cc/gram of dry microcapsules. Shelf-life studies show that the microcapsules retain ∼84 wt% of the initially loaded H2O2 after nine months storage at 2–8 °C, which is an attractive feature for clinical applications

    Mapping isoprene emissions over North America using formaldehyde column observations from space

    Get PDF
    We present a methodology for deriving emissions of volatile organic compounds (VOC) using space-based column observations of formaldehyde (HCHO) and apply it to data from the Global Ozone Monitoring Experiment (GOME) satellite instrument over North America during July 1996. The HCHO column is related to local VOC emissions, with a spatial smearing that increases with the VOC lifetime. Isoprene is the dominant HCHO precursor over North America in summer, and its lifetime (≃1 hour) is sufficiently short that the smearing can be neglected. We use the Goddard Earth Observing System global 3-D model of tropospheric chemistry (GEOS-CHEM) to derive the relationship between isoprene emissions and HCHO columns over North America and use these relationships to convert the GOME HCHO columns to isoprene emissions. We also use the GEOS-CHEM model as an intermediary to validate the GOME HCHO column measurements by comparison with in situ observations. The GEOS-CHEM model including the Global Emissions Inventory Activity (GEIA) isoprene emission inventory provides a good simulation of both the GOME data (r2 = 0.69, n = 756, bias = +11%) and the in situ summertime HCHO measurements over North America (r2 = 0.47, n = 10, bias = −3%). The GOME observations show high values over regions of known high isoprene emissions and a day-to-day variability that is consistent with the temperature dependence of isoprene emission. Isoprene emissions inferred from the GOME data are 20% less than GEIA on average over North America and twice those from the U.S. EPA Biogenic Emissions Inventory System (BEIS2) inventory. The GOME isoprene inventory when implemented in the GEOS-CHEM model provides a better simulation of the HCHO in situ measurements than either GEIA or BEIS2 (r2 = 0.71, n = 10, bias = −10%)

    Low-Complexity Sub-band Digital Predistortion for Spurious Emission Suppression in Noncontiguous Spectrum Access

    Full text link
    Noncontiguous transmission schemes combined with high power-efficiency requirements pose big challenges for radio transmitter and power amplifier (PA) design and implementation. Due to the nonlinear nature of the PA, severe unwanted emissions can occur, which can potentially interfere with neighboring channel signals or even desensitize the own receiver in frequency division duplexing (FDD) transceivers. In this article, to suppress such unwanted emissions, a low-complexity sub-band DPD solution, specifically tailored for spectrally noncontiguous transmission schemes in low-cost devices, is proposed. The proposed technique aims at mitigating only the selected spurious intermodulation distortion components at the PA output, hence allowing for substantially reduced processing complexity compared to classical linearization solutions. Furthermore, novel decorrelation based parameter learning solutions are also proposed and formulated, which offer reduced computing complexity in parameter estimation as well as the ability to track time-varying features adaptively. Comprehensive simulation and RF measurement results are provided, using a commercial LTE-Advanced mobile PA, to evaluate and validate the effectiveness of the proposed solution in real world scenarios. The obtained results demonstrate that highly efficient spurious component suppression can be obtained using the proposed solutions

    Optical microscopy via spectral modifications of a nano-antenna

    Full text link
    The existing optical microscopes form an image by collecting photons emitted from an object. Here we report on the experimental realization of microscopy without the need for direct optical communication with the sample. To achieve this, we have scanned a single gold nanoparticle acting as a nano-antenna in the near field of a sample and have studied the modification of its intrinsic radiative properties by monitoring its plasmon spectrum.Comment: 6 pages, 4 figures (color

    Photonic mode density effects on single-molecule fluorescence blinking

    Get PDF
    We investigated the influence of the photonic mode density (PMD) on the triplet dynamics of individual chromophores on a dielectric interface by comparing their response in the presence and absence of a nearby gold film. Lifetimes of the excited singlet state were evaluated in ordet to measure directly the PMD at the molecules position. Triplet state lifetimes were simultaneously determined by statistical analysis of the detection time of the fluorescence photons. The observed singlet decay rates are in agreement with the predicted PMD for molecules with different orientations. The triplet decay rate is modified in a fashion correlated to the singlet decay rate. These results show that PMD engineering can lead to an important suppression of the fluorescence, introducing a novel aspect of the physical mechanism to enhance fluorescence intensity in PMD-enhancing systems such as plasmonic devices

    Measuring the quantum efficiency of single radiating dipoles using a scanning mirror

    Full text link
    Using scanning probe techniques, we show the controlled manipulation of the radiation from single dipoles. In one experiment we study the modification of the fluorescence lifetime of a single molecular dipole in front of a movable silver mirror. A second experiment demonstrates the changing plasmon spectrum of a gold nanoparticle in front of a dielectric mirror. Comparison of our data with theoretical models allows determination of the quantum efficiency of each radiating dipole.Comment: 4 pages, 4 figure
    corecore