186,889 research outputs found

    Observation of Fluctuation-Dissipation-Theorem Violations in a Structural Glass

    Full text link
    The fluctuation-dissipation theorem (FDT), connecting dielectric susceptibility and polarization noise was studied in glycerol below its glass transition temperature Tg. Weak FDT violations were observed after a quench from just above to just below Tg, for frequencies above the alpha peak. Violations persisted up to 10^5 times the thermal equilibration time of the configurational degrees of freedom under study, but comparable to the average relaxation time of the material. These results suggest that excess energy flows from slower to faster relaxing modes.Comment: Improved discussion; final version to appear in Phys. Rev. Lett. 4 pages, 5 PS figures, RevTe

    A linked cluster expansion for the calculation of the semi-inclusive A(e,e'p)X processes using correlated Glauber wave functions

    Full text link
    The distorted one-body mixed density matrix, which is the basic nuclear quantity appearing in the definition of the cross section for the semi-inclusive A(e,e'p)X processes, is calculated within a linked-cluster expansion based upon correlated wave functions and the Glauber multiple scattering theory to take into account the final state interaction of the ejected nucleon. The nuclear transparency for 16O and 40Ca is calculated using realistic central and non-central correlations and the important role played by the latter is illustrated.Comment: 18 pages, RevTeX, 3 ps figures. Final version, to appear in Phys. Rev.

    In-Situ Evidence for Uranium Immobilization and Remobilization

    Get PDF
    The in-situ microbial reduction and immobilization of uranium was assessed as a means of preventing the migration of this element in the terrestrial subsurface. Uranium immobilization (putatively identified as reduction) and microbial respiratory activities were evaluated in the presence of exogenous electron donors and acceptors with field push-pull tests using wells installed in an anoxic aquifer contaminated with landfill leachate. Uranium-(VI) amended at 1.5 µM was reduced to less than 1 nM in groundwater in less than 8 d during all field experiments. Amendments of 0.5 mM sulfate or 5 mM nitrate slowed U(VI) immobilization and allowed for the recovery of 10% and 54% of the injected element, respectively, as compared to 4% in the unamended treatment. Laboratory incubations confirmed the field tests and showed that the majority of the U(VI) immobilized was due to microbial reduction. In these tests, nitrate treatment (7.5 mM) inhibited U(VI) reduction, and nitrite was transiently produced. Further push-pull tests were performed in which either 1 or 5 mM nitrate was added with 1.0 µM U(VI) to sediments that already contained immobilized uranium. After an initial loss of the amendments, the concentration of soluble U(VI) increased and eventually exceeded the injected concentration, indicating that previously immobilized uranium was remobilized as nitrate was reduced. Laboratory experiments using heat-inactivated sediment slurries suggested that the intermediates of dissimilatory nitrate reduction (denitrification or dissimilatory nitrate reduction to ammonia), nitrite, nitrous oxide, and nitric oxide were all capable of oxidizing and mobilizing U(IV). These findings indicate that insitu subsurface U(VI) immobilization can be expected to take place under anaerobic conditions, but the permanence of the approach can be impaired by disimilatory nitrate reduction intermediates that can mobilize previously reduced uranium

    Cluster Dynamical Mean-field calculations for TiOCl

    Full text link
    Based on a combination of cluster dynamical mean field theory (DMFT) and density functional calculations, we calculated the angle-integrated spectral density in the layered s=1/2s=1/2 quantum magnet TiOCl. The agreement with recent photoemission and oxygen K-edge X-ray absorption spectroscopy experiments is found to be good. Th e improvement achieved with this calculation with respect to previous single-site DMFT calculations is an indication of the correlated nature and low-dimensionality of TiOCl.Comment: 9 pages, 3 figures, improved version as publishe

    Quantum Effects in the Mechanical Properties of Suspended Nanomechanical Systems

    Full text link
    We explore the quantum aspects of an elastic bar supported at both ends and subject to compression. If strain rather than stress is held fixed, the system remains stable beyond the buckling instability, supporting two potential minima. The classical equilibrium transverse displacement is analogous to a Ginsburg-Landau order parameter, with strain playing the role of temperature. We calculate the quantum fluctuations about the classical value as a function of strain. Excitation energies and quantum fluctuation amplitudes are compared for silicon beams and carbon nanotubes.Comment: RevTeX4. 5 pages, 3 eps figures. Submitted to Physical Review Letter

    First Passage Time Densities in Non-Markovian Models with Subthreshold Oscillations

    Full text link
    Motivated by the dynamics of resonant neurons we consider a differentiable, non-Markovian random process x(t)x(t) and particularly the time after which it will reach a certain level xbx_b. The probability density of this first passage time is expressed as infinite series of integrals over joint probability densities of xx and its velocity xË™\dot{x}. Approximating higher order terms of this series through the lower order ones leads to closed expressions in the cases of vanishing and moderate correlations between subsequent crossings of xbx_b. For a linear oscillator driven by white or coloured Gaussian noise, which models a resonant neuron, we show that these approximations reproduce the complex structures of the first passage time densities characteristic for the underdamped dynamics, where Markovian approximations (giving monotonous first passage time distribution) fail

    Quasi two-dimensional antiferromagnet on a triangular lattice RbFe(MoO4)2

    Full text link
    RbFe(MoO4)2 is a rare example of a nearly two-dimensional Heisenberg antiferromagnet on a triangular lattice. Magnetic resonance spectra and magnetization curves reveal that the system has a layered spin structure with six magnetic sublattices. The sublattices within a layer are arranged in a triangular manner with the magnetization vectors 120 degree apart. The H-T phase diagram, containing at least five different magnetic phases is constructed. In zero field, RbFe(MoO4)2 undergoes a phase transition at T_N=3.8 K into a non-collinear triangular spin structure with all the spins confined in the basal plane. The application of an in-plane magnetic field induces a collinear spin state between the fields H_c1=47 kOe and H_c2=71 kOe and produces a magnetization plateau at one-third of the saturation moment. Both the ESR and the magnetization measurements also clearly indicate an additional first-order phase transition in a field of 35 kOe. The exact nature of this phase transition is uncertain.Comment: 9 pages incl 11 figure

    Isolation and primary cultures of human intrahepatic bile ductular epithelium

    Get PDF
    A technique for the isolation of human intrahepatic bile ductular epithelium, and the establishment of primary cultures using a serum- and growth-factor-supplemented medium combined with a connective tissue substrata is described. Initial cell isolates and monolayer cultures display phenotypic characteristics of biliary epithelial cells (low molecular weight prekeratin positive; albumin, alphafetoprotein, and Factor VIII-related antigen negative). Ultrastructural features of the cultured cells show cell polarization with surface microvilli, numerous interepithelial junctional complexes and cytoplasmic intermediate prekeratin filaments. © 1988 Tissue Culture Association, Inc

    Modulational instability in periodic quadratic nonlinear materials

    Get PDF
    We investigate the modulational instability of plane waves in quadratic nonlinear materials with linear and nonlinear quasi-phase-matching gratings. Exact Floquet calculations, confirmed by numerical simulations, show that the periodicity can drastically alter the gain spectrum but never completely removes the instability. The low-frequency part of the gain spectrum is accurately predicted by an averaged theory and disappears for certain gratings. The high-frequency part is related to the inherent gain of the homogeneous non-phase-matched material and is a consistent spectral feature.Comment: 4 pages, 7 figures corrected minor misprint
    • …
    corecore