533 research outputs found

    New Model Reference Adaptive System Speed Observer for Field-Oriented Control Induction Motor Drives Using Neural Networks

    Full text link
    One of the primary advantages of field-oriented controlled induction motor for high performance application is the capability for easy field weakening and the full utilization of voltage and current rating of the inverter to obtain a wide dynamic speed rangeThis paper describes a Model Reference Adaptive System (MRAS) based scheme using Artificial Neural Network (ANN) for online speed estimation of sensorless vector controlled induction motor drive. The proposed MRAS speed observer uses the current model as an adaptive model. The neural network has been then designed and trained online by employing a back propagation network (BPN) algorithm. The estimator was designed and simulated in Matlab/Simulink. Simulation result shows a good performance of speed estimator. The simulation results show good performance in various operating conditions. Also Performance analysis of speed estimator with the change in resistances of stator is presented. Simulation results show this estimator robust to parameter variations especially resistances of stator

    New Model Reference Adaptive System Speed Observer for Field-Oriented Control Induction Motor Drives Using Neural Networks

    Full text link
    One of the primary advantages of field-oriented controlled induction motor for high performance application is the capability for easy field weakening and the full utilization of voltage and current rating of the inverter to obtain a wide dynamic speed rangeThis paper describes a Model Reference Adaptive System (MRAS) based scheme using Artificial Neural Network (ANN) for online speed estimation of sensorless vector controlled induction motor drive. The proposed MRAS speed observer uses the current model as an adaptive model. The neural network has been then designed and trained online by employing a back propagation network (BPN) algorithm. The estimator was designed and simulated in Matlab/Simulink. Simulation result shows a good performance of speed estimator. The simulation results show good performance in various operating conditions. Also Performance analysis of speed estimator with the change in resistances of stator is presented. Simulation results show this estimator robust to parameter variations especially resistances of stator

    Skeletal muscle dysfunction is associated with derangements in mitochondrial bioenergetics (but not UCP3) in a rodent model of sepsis

    Get PDF
    Muscle dysfunction is a common feature of severe sepsis and multi-organ failure. Recent evidence implicates bioenergetic dysfunction and oxidative damage as important underlying pathophysiological mechanisms. Increased abundance of uncoupling protein-3 (UCP-3) in sepsis suggests increased mitochondrial proton leak, which may reduce mitochondrial coupling efficiency but limit ROS production. Using a murine model, we examined metabolic, cardiovascular and skeletal muscle contractile changes following induction of peritoneal sepsis in wild-type and Ucp3(-/-) mice. Mitochondrial membrane potential (Δψm) was measured using two-photon microscopy in living diaphragm, and contractile function was measured in diaphragm muscle strips. The kinetic relationship between membrane potential and oxygen consumption was determined using a modular kinetic approach in isolated mitochondria. Sepsis was associated with significant whole body metabolic suppression, hypothermia and cardiovascular dysfunction. Maximal force generation was reduced and fatigue accelerated in ex vivo diaphragm muscle strips from septic mice. Mitochondrial membrane potential was lower in the isolated diaphragm from septic mice despite normal substrate oxidation kinetics and proton leak in skeletal muscle mitochondria. Even though wild-type mice exhibited an absolute 26 ± 6% higher UCP-3 protein abundance at 24 hours, no differences were seen in whole animal or diaphragm physiology, nor in survival rates, between wild-type and Ucp3(-/-) mice. In conclusion, this murine sepsis model shows a hypometabolic phenotype with evidence of significant cardiovascular and muscle dysfunction. This was associated with lower Δψm and alterations in mitochondrial ATP turnover and phosphorylation pathway. However, UCP-3 does not play an important functional role, despite its upregulation

    Fillet quality grading of common carp (Cyprinus carpio) by fish size using mathematical equations

    Get PDF
    Quality grading and nutrition value determination of fish are nowadays necessary for aquatic processing. The present study was conducted to investigate a new, applied and cheap method of fillet quality grading for common carp (Cyprinus carpio) using fish size, based on mathematical equations. For this reason, 61 specimens of cultured market size carp were used and after filleting, their moisture, lipid, protein, energy and ash content were measured. Then, the relationships between proximate composition components of fillet and fillet length were studied. Results showed that there is an inverse linear regression relationship between logarithm of moisture content and logarithm of fish length (P0.05). Regarding the relationship between proximate composition of cultured carp fillets and fillet length machine fish sorting based on fish length and grading of moisture, lipid and energy content is feasible. We also found it feasible to determine type of processing and proximate composition of the prepared common carp

    Enhancement of NMP degradation under UV light by nitrogen-doped TiO2 thin films using a design of experiment

    Get PDF
    Doping nitrogen within TiO2 is an effective way to enhance visible light photocatalysis due to a direct electron excitation from the N2p states within the band gap. However, nitrogen doping is not always efficient for UV photocatalytic activity. Here, different structures of N-doped TiO2 (TiOxNy) have been prepared by reactive RF (13.56 MHz) magnetron sputtering. The morphological, optical, structural, and photocatalytic properties of the films have been studied in order to investigate the competitive effect of the morphology and the chemical composition on the efficiency of the photocatalytic activity. The variation of surface wettability of the film over time in the dark and under visible and UV irradiation was also studied. The reduction in wettability by dark storage can be explained by the adsorption of hydrocarbon contamination on the thin film’s surface. Additionally, from water contact angle experiments, it was found that these films developed hydrophilic properties upon UV and visible illumination. The photoinduced change in the contact angle of water was due to the removal of hydrocarbon contamination on the surface and also the photo-oxidation of the water droplet. Samples prepared at high pressure gave the best photocatalytic activity, even though the deposition rate was lower at higher pressures (lower film thicknesses), due to the high specific surface area and the optimal presence of TiOxNy crystals in the lattice. However, at low pressure, the TiN crystals became more predominant, and acted as recombination centers for the photo-generated charge carriers. A design of experiments was used in order to optimize the deposition parameters to have the best photocatalytic activity. The high photocatalytic activity under UV light was found to be due to the introduction of discrete energy levels within the band gap, the increased sample wettability, and the higher specific surface area. However, the post annealing process did not effect the activity under UV irradiation. Using the response surface methodology, RSM, based on a design of experiment, DOE, we are able to achieve a good understanding of the complex processes involved in the deposition of the thin films and their effect on the photocatalytic activity. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/930

    A simple genetic algorithm for calibration of stochastic rock discontinuity networks

    Get PDF
    Este artículo propone un método para llevar a cabo la calibración de las familias de discontinuidades en macizos rocosos. We present a novel approach for calibration of stochastic discontinuity network parameters based on genetic algorithms (GAs). To validate the approach, examples of application of the method to cases with known parameters of the original Poisson discontinuity network are presented. Parameters of the model are encoded as chromosomes using a binary representation, and such chromosomes evolve as successive generations of a randomly generated initial population, subjected to GA operations of selection, crossover and mutation. Such back-calculated parameters are employed to make assessments about the inference capabilities of the model using different objective functions with different probabilities of crossover and mutation. Results show that the predictive capabilities of GAs significantly depend on the type of objective function considered; and they also show that the calibration capabilities of the genetic algorithm can be acceptable for practical engineering applications, since in most cases they can be expected to provide parameter estimates with relatively small errors for those parameters of the network (such as intensity and mean size of discontinuities) that have the strongest influence on many engineering applications

    Physiological and biochemical responses of Quercus brantii seedlings to water deficit stress

    Get PDF
    Water shortage is one of the most important environmental stresses in Mediterranean regions. Poor seedling quality may account for the failure of oak regeneration. To determine the best seed origin of Quercus brantii, we investigated on seedlings collected from 20 mother trees in the Zagros Mountain forests 700 to 2200 m altitudes above sea level. Seedlings from different altitudes were irrigated at 25%, 50%, 75% and 100% of field capacity (FC), from June through the end of August 2005, and then their growth, physiological and biochemical parameters were examined. The results showed that the activity of peroxidase (PO), superoxide dismutase (SOD), and amylase, as well as the rate of membrane lipid peroxidation and the content of lignin were not affected by water deficit stress. However, the survival and growth rates were reduced below 50% FC. Seedlings originated from lower altitudes had higher growth and survival rate than those from higher altitudes below 50% of FC. The seedlings grown under 50% FC had also high phosphorus and water soluble carbohydrate contents. In conclusion, the present study showed that the seedlings from lower altitudes, which their mother trees grown under warmer climate condition in growth season, were more resistant to water deficit due to higher root to shoot ratio, phosphorus and water soluble carbohydrate contents under water deficits

    Application of System Biology to Explore the Association of Neprilysin, Angiotensin-Converting Enzyme 2 (ACE2), and Carbonic Anhydrase (CA) in Pathogenesis of SARS-CoV-2

    Get PDF
    Background: Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) appears with common symptoms including fever, dry cough, and fatigue, as well as some less common sysmptoms such as loss of taste and smell, diarrhea, skin rashes and discoloration of fingers. COVID-19 patients may also suffer from serious symptoms including shortness of breathing, chest pressure and pain, as well as loss of daily routine habits, pointing out to a sever reduction in the quality of life. COVID-19 has afftected almost all countries, however, the United States contains the highest number of infection (> 1,595,000 cases) and deaths cases (> 95,000 deaths) in the world until May 21, 2020. Finding an influential treatment strategy against COVID-19 can be facilitated through better understanding of the virus pathogenesis and consequently interrupting the biochemical pathways that the virus may play role in human body as the current reservoir of the virus. Results: In this study, we combined system biology and bioinformatic approaches to define the role of coexpression of angiotensin-converting enzyme 2 (ACE2), neprilysin or membrane metallo-endopeptidase (MME), and carbonic anhydrases (CAs) and their association in the pathogenesis of SARS-CoV-2. The results revealed that ACE2 as the cellular attachment site of SARS-CoV-2, neprilysin, and CAs have a great contribution together in the renin angiotensin system (RAS) and consequently in pathogenesis of SARS-CoV-2 in the vital organs such as respiratory, renal, and blood circulation systems. Any disorder in neprilysin, ACE2, and CAs can lead to increase of CO2 concentration in blood and respiratory acidosis, induction of pulmonary edema and heart and renal failures. Conclusions: Due to the presence of ACE2-Neprilysin-CA complex in most of vital organs and as a receptor of COVID-19, it is expected that most organs are affected by SARS-CoV-2 such as inflammation and fibrosis of lungs, which may conversely affect their vital functions, temporary or permanently, sometimes leading to death. Therefore, ACE2-Neprilysin-CA complex could be the key factor of pathogenesis of SARS-CoV-2 and may provide us useful information to find better provocative and therapeutic strategies against COVID-19. © 2020 The Author(s)

    Type-2 fuzzy linear systems

    Get PDF
    Fuzzy Linear Systems (FLSs) are used in practical situations where some of the systems parameters or variables are uncertain. To date, investigations conducted on FLSs are restricted to those in which the uncertainty is assumed to be modeled by Type-1 Fuzzy Sets (T1FSs). However, there are many situations where considering the uncertainty as T1FSs may not be possible due to different interpretations of experts about the uncertainty. Moreover, solutions of FLSs are T1FSs which do not provide any information about a measure of the dispersion of uncertainty around the T1FSs. Therefore, in this research a model of uncertain linear equations system called a type-2 fuzzy linear system is presented to overcome the shortcomings. The uncertainty is represented by a special class of type-2 fuzzy sets – triangular perfect quasi type-2 fuzzy numbers. Additionally, conditions for the existence of a unique type–2 fuzzy solution to the linear system are derived. A definition of a type-2 fuzzy solution is also given. The applicability of the proposed model is illustrated using examples in the pulp and paper industry, and electrical engineering

    Additive manufacturing of zinc-based biomaterials: Fabrication, performance and property evaluation

    Get PDF
    The use of zinc and its alloys in additive manufacturing has become an important focus in interventional medical field. This is because zinc as an implant is naturally degradable, has solid mechanical characteristics, and is biocompatible. Biodegradable Zn-based metals made with additive manufacturing offer significant advantages in creating personalized medical implants. This review aims to provide an overview of different types of additive manufacturing methods and processes that can be used in the fabrication of Zn-based medical implants. It offers a comprehensive understanding of additive-manufactured Zn-based alloys for interventional surgeries. The study also summarizes the relationships between degradation properties, mechanical properties, antibacterial activity, and biocompatibility of additive-manufactured Zn-based biomaterials prepared via different fabrication techniques. Additionally, the review analyses various strategies for overcoming core challenges associated with Zn-based medical implants prepared by additive manufacturing. Finally, the review also proposes future directions for addressing biodegradability and biocompatibility in additive-manufactured Zn-based materials for scaffolding and orthopaedic implant applications. Overall, this study serves as a foundation for future research into the design of biodegradable Zn-based alloys, specifically for tissue scaffolding and bone repairs, and provides insights into their clinical prospects
    corecore