1,780 research outputs found

    The development of temperament and character during adolescence: The processes and phases of change

    Get PDF
    AbstractWe studied the pattern of personality development in a longitudinal population-based sample of 752 American adolescents. Personality was assessed reliably with the Junior Temperament and Character Inventory at 12, 14, and 16 years of age. The rank-order stability of Junior Temperament and Character Inventory traits from age 12 to 16 was moderate (r = .35). Hierarchical linear modeling of between-group variance due to gender and within-group variance due to age indicated that harm avoidance and persistence decreased whereas self-directedness and cooperativeness increased from age 12 to 16. Novelty seeking, reward dependence, and self-transcendence increased from age 12 to 14 and then decreased. This biphasic pattern suggests that prior to age 14 teens became more emancipated from adult authorities while identifying more with the emergent norms of their peers, and after age 14 their created identity was internalized. Girls were more self-directed and cooperative than boys and maintained this advantage from age 12 to 16. Dependability of temperament at age 16 was mainly predicted by the same traits at earlier ages. In contrast, maturity of character at age 16 was predicted by both temperament and character at earlier ages. We conclude that character develops rapidly in adolescence to self-regulate temperament in accord with personally valued goals shaped by peers.</jats:p

    Convergence science in the Anthropocene: Navigating the known and unknown

    Get PDF
    Rapidly changing ecological and social systems currently pose significant societal challenges. Navigating the complexity of social-ecological change requires ap- proaches able to cope with, and potentially solve, both foreseen and unforeseen societal challenges. The emergent field of convergence addresses the intricacies of such challenges, and is thus relevant to a broad range of interdisciplinary issues. This paper suggests a way to conceptualize convergence research. It discusses how it relates to two major societal challenges (adaptation, transformation), and to the generation of policy-relevant science. It also points out limitations to the further development of convergence research

    Redesigning Bitcoin's Fee Market

    Get PDF

    Universality of modulation length (and time) exponents

    Full text link
    We study systems with a crossover parameter lambda, such as the temperature T, which has a threshold value lambda* across which the correlation function changes from exhibiting fixed wavelength (or time period) modulations to continuously varying modulation lengths (or times). We report on a new exponent, nuL, characterizing the universal nature of this crossover. These exponents, similar to standard correlation length exponents, are obtained from motion of the poles of the momentum (or frequency) space correlation functions in the complex k-plane (or omega-plane) as the parameter lambda is varied. Near the crossover, the characteristic modulation wave-vector KR on the variable modulation length "phase" is related to that on the fixed modulation length side, q via |KR-q|\propto|T-T*|^{nuL}. We find, in general, that nuL=1/2. In some special instances, nuL may attain other rational values. We extend this result to general problems in which the eigenvalue of an operator or a pole characterizing general response functions may attain a constant real (or imaginary) part beyond a particular threshold value, lambda*. We discuss extensions of this result to multiple other arenas. These include the ANNNI model. By extending our considerations, we comment on relations pertaining not only to the modulation lengths (or times) but also to the standard correlation lengths (or times). We introduce the notion of a Josephson timescale. We comment on the presence of "chaotic" modulations in "soft-spin" and other systems. These relate to glass type features. We discuss applications to Fermi systems - with particular application to metal to band insulator transitions, change of Fermi surface topology, divergent effective masses, Dirac systems, and topological insulators. Both regular periodic and glassy (and spatially chaotic behavior) may be found in strongly correlated electronic systems.Comment: 22 pages, 15 figure

    Phase decorrelation, streamwise vortices and acoustic radiation in mixing layers

    Get PDF
    Several direct numerical simulations were performed and analyzed to study various aspects of the early development of mixing layers. Included are the phase jitter of the large-scale eddies, which was studied using a 2-D spatially-evolving mixing layer simulation; the response of a time developing mixing layer to various spanwise disturbances; and the sound radiation from a 2-D compressible time developing mixing layer

    Comments on worldsheet theories dual to free large N gauge theories

    Get PDF
    We continue to investigate properties of the worldsheet conformal field theories (CFTs) which are conjectured to be dual to free large N gauge theories, using the mapping of Feynman diagrams to the worldsheet suggested in hep-th/0504229. The modular invariance of these CFTs is shown to be built into the formalism. We show that correlation functions in these CFTs which are localized on subspaces of the moduli space may be interpreted as delta-function distributions, and that this can be consistent with a local worldsheet description given some constraints on the operator product expansion coefficients. We illustrate these features by a detailed analysis of a specific four-point function diagram. To reliably compute this correlator we use a novel perturbation scheme which involves an expansion in the large dimension of some operators.Comment: 43 pages, 16 figures, JHEP format. v2: added reference
    • …
    corecore