2,572 research outputs found

    Hydrogen as a Source of Flux Noise in SQUIDs

    Full text link
    Superconducting qubits are hampered by flux noise produced by surface spins from a variety of microscopic sources. Recent experiments indicated that hydrogen (H) atoms may be one of those sources. Using density functional theory calculations, we report that H atoms either embedded in, or adsorbed on, an a-Al2O3(0001) surface have sizeable spin moments ranging from 0.81 to 0.87 uB with energy barriers for spin reorientation as low as ~10 mK. Furthermore, H adatoms on the surface attract gas molecules such as O2, producing new spin sources. We propose coating the surface with graphene to eliminate H-induced surface spins and to protect the surface from other adsorbates.Comment: 12 pages, 4 figure

    Interface enhancement of Gilbert damping from first-principles

    Get PDF
    The enhancement of Gilbert damping observed for Ni80Fe20 (Py) films in contact with the non-magnetic metals Cu, Pd, Ta and Pt, is quantitatively reproduced using first-principles scattering theory. The "spin-pumping" theory that qualitatively explains its dependence on the Py thickness is generalized to include a number of factors known to be important for spin transport through interfaces. Determining the parameters in this theory from first-principles shows that interface spin-flipping makes an essential contribution to the damping enhancement. Without it, a much shorter spin-flip diffusion length for Pt would be needed than the value we calculate independently

    Ballistic Thermal Rectification in Asymmetric Three-Terminal Mesoscopic Dielectric Systems

    Full text link
    By coupling the asymmetric three-terminal mesoscopic dielectric system with a temperature probe, at low temperature, the ballistic heat flux flow through the other two asymmetric terminals in the nonlinear response regime is studied based on the Landauer formulation of transport theory. The thermal rectification is attained at the quantum regime. It is a purely quantum effect and is determined by the dependence of the ratio τRC(ω)/τRL(ω)\tau_{RC}(\omega)/\tau_{RL}(\omega) on ω\omega, the phonon's frequency. Where τRC(ω)\tau_{RC}(\omega) and τRL(ω)\tau_{RL}(\omega) are respectively the transmission coefficients from two asymmetric terminals to the temperature probe, which are determined by the inelastic scattering of ballistic phonons in the temperature probe. Our results are confirmed by extensive numerical simulations.Comment: 10 pages, 4 figure
    • …
    corecore