63 research outputs found
Immunological adjuvants in allergy vaccines: Past, present future
ABSTRACTHundreds of compounds have been tested over the years in a search for adjuvants to incorporate with antigens or allergens to enhance the immune response. Despite this, aluminum salts have been the only adjuvants that have been both registered for clinical application and used on a large scale until recently. Salts of aluminum, such as aluminum hydroxide, have been used as general immunologic adjuvants for several decades. Some allergen vaccines used for the treatment of allergy are still formulated with aluminum-based adjuvants. These formulations have generally proved efficacious and have a good safety profile compared with simple aqueous extracts. However, there is reported sensitivity and toxicity associated with use of aluminum. In addition, aluminum salts are known to be potent stimulators of T helper (h) 2 cell activity. Because Th2 activity directs towards an allergic response, aluminum salts are potentially counterproductive when used as adjuvants in the immunologic treatment of type 1 hypersensitivity. Many soluble and insoluble molecules have been reported to have adjuvant activity in experimental systems. Some of these have been used clinically, but side effects, such as local granuloma formation, have led to their withdrawal from clinical use. Newer depot-type adjuvants, such as insoluble calcium salts, tyrosine (now registered) and coupled alginates, may eliminate some of the potential problems of aluminum salts and are currently used in some allergy vaccines but have not as yet formed a complete replacement. Liposomes, iscoms and biodegradable microspheres are now being considered for clinical use as adjuvants for both oral and parenteral routes. Soluble adjuvants that are capable of directing the immune response in a more selective way are currently in development for use in allergy vaccines. One of these, the Th1-directing adjuvant monophosphoryl lipid A (MPL®; Corixa, Seattle, WA, USA), is now in clinical use in allergy vaccines formulated with the depot adjuvant L-tyrosine. Other ways of stimulating a Th 1 response using immunostimulatory DNA sequences (immunostimulatory DNA sequences (ISS) or CpG motifs) as 'built-in' adjuvants are being studied. Further interesting adjuvants reported in the literature, such as Montanide ISA 720, SAF-m, RC-529 and QS21, may also be applicable to allergy vaccination
APOL1-Associated glomerular disease among African-American children: A collaboration of the chronic kidney disease in children (CKiD) and nephrotic syndrome study network (NEPTUNE) cohorts
Background: Individuals of African ancestry harboring two variant alleles within apolipoprotein L1 (APOL1) are classified with a high-risk (HR) genotype. Adults with an HR genotype have increased risk of focal segmental glomerulosclerosis and chronic kidney disease compared with those with a low-risk (LR) genotype (0 or 1 variants). The role of APOL1 risk genotypes in children with glomerular disease is less well known. Methods: This study characterized 104 African-American children with a glomerular disease by APOL1 genotype in two cohorts: The Chronic Kidney Disease in Children (CKiD) and Nephrotic Syndrome Study Network (NEPTUNE). Results: Among these subjects, 46% had an HR genotype with a similar age at cohort enrollment. For APOL1 HR children, the median age of disease onset was older (CKiD: 4.5 versus 11.5 years for LR versus HR; NEPTUNE: 11 versus 14 years for LR versus HR, respectively) and preterm birth was more common [CKiD: 27 versus 4%; NEPTUNE: 26 versus 12%; combined odds ratio 4.6 (95% confidence interval: 1.4, 15.5)].Within studies, HR children had lower initial estimated glomerular filtration rate (EGFR) (CKiD: 53 versus 69 mL/min/1.73 m2; NEPTUNE: 74 versus 94 mL/min/1.73 m2). Longitudinal EGFR decline was faster among HR children versus LR (CKiD: -18 versus -8% per year; NEPTUNE: -13 versus-3% per year). Conclusions: Children with an HR genotype in CKiD and NEPTUNE seem to have a more aggressive form of glomerular disease, in part due to a higher prevalence of focal segmental glomerulosclerosis. These consistent findings across independent cohorts suggest a common natural history for children with APOL1-Associated glomerular disease. Further study is needed to determine the generalizability of these findings
Incidence and outcomes of neonatal acute kidney injury (AWAKEN): a multicentre, multinational, observational cohort study
Background: Single-center studies suggest that neonatal acute kidney injury (AKI) is associated with poor outcomes. However, inferences regarding the association between AKI, mortality, and hospital length of stay are limited due to the small sample size of those studies. In order to determine whether neonatal AKI is independently associated with increased mortality and longer hospital stay, we analyzed the Assessment of Worldwide Acute Kidney Epidemiology in Neonates (AWAKEN) database.
Methods: All neonates admitted to 24 participating neonatal intensive care units from four countries (Australia, Canada, India, United States) between January 1 and March 31, 2014, were screened. Of 4273 neonates screened, 2022 (47·3%) met study criteria. Exclusion criteria included: no intravenous fluids ≥48 hours, admission ≥14 days of life, congenital heart disease requiring surgical repair at <7 days of life, lethal chromosomal anomaly, death within 48 hours, inability to determine AKI status or severe congenital kidney abnormalities. AKI was defined using a standardized definition -i.e., serum creatinine rise of ≥0.3 mg/dL (26.5 mcmol/L) or ≥50% from previous lowest value, and/or if urine output was <1 mL/kg/h on postnatal days 2 to 7.
Findings: Incidence of AKI was 605/2022 (29·9%). Rates varied by gestational age groups (i.e., ≥22 to <29 weeks =47·9%; ≥29 to <36 weeks =18·3%; and ≥36 weeks =36·7%). Even after adjusting for multiple potential confounding factors, infants with AKI had higher mortality compared to those without AKI [(59/605 (9·7%) vs. 20/1417 (1·4%); p< 0.001; adjusted OR=4·6 (95% CI=2·5-8·3); p=<0·0001], and longer hospital stay [adjusted parameter estimate 8·8 days (95% CI=6·1-11·5); p<0·0001].
Interpretation: Neonatal AKI is a common and independent risk factor for mortality and longer hospital stay. These data suggest that neonates may be impacted by AKI in a manner similar to pediatric and adult patients
ACE I/D Gene Polymorphism Can't Predict the Steroid Responsiveness in Asian Children with Idiopathic Nephrotic Syndrome: A Meta-Analysis
The results from the published studies on the association between
angiotensin-converting enzyme (ACE) insertion/deletion (I/D) gene
polymorphism and the treatment response to steroid in Asian children with
idiopathic nephrotic syndrome (INS) is still conflicting. This meta-analysis
was performed to evaluate the relation between ACE I/D gene polymorphism and
treatment response to steroid in Asian children and to explore whether ACE D
allele or DD genotype could become a predictive marker for steroid
responsiveness. = 0.85; respectively), however, the
result for the association of II genotype with SRNS risk was not stable.Our results indicate that D allele or DD homozygous can't become a
significant genetic molecular marker to predict the treatment response to
steroid in Asian children with INS
Aldosterone Antagonists in Monotherapy Are Protective against Streptozotocin-Induced Diabetic Nephropathy in Rats
Angiotensin converting enzyme inhibitors (ACEi) and angiotensin II receptor blockers (ARB) are the standard clinical therapy of diabetic nephropathy (DN), while aldosterone antagonists are only used as adjuncts. Previously in experimental DN we showed that Na/K ATPase (NKA) is mislocated and angiotensin II leads to superimposed renal progression. Here we investigated the monotherapeutic effect of aldosterone blockers on the progression of DN and renal NKA alteration in comparison to ACEi and ARBs. Streptozotocin-diabetic rats developing DN were treated with aldosterone antagonists; ACEi and ARB. Renal function, morphology, protein level and tubular localization of NKA were analyzed. To evaluate the effect of high glucose per se; HK-2 proximal tubular cells were cultured in normal or high concentration of glucose and treated with the same agents. Aldosterone antagonists were the most effective in ameliorating functional and structural kidney damage and they normalized diabetes induced bradycardia and weight loss. Aldosterone blockers also prevented hyperglycemia and diabetes induced increase in NKA protein level and enzyme mislocation. A monotherapy with aldosterone antagonists might be as, or more effective than ACEi or ARBs in the prevention of STZ-induced DN. Furthermore the alteration of the NKA could represent a novel pathophysiological feature of DN and might serve as an additional target of aldosterone blockers
Hypertension in children with chronic kidney disease: pathophysiology and management
Arterial hypertension is very common in children with all stages of chronic kidney disease (CKD). While fluid overload and activation of the renin–angiotensin system have long been recognized as crucial pathophysiological pathways, sympathetic hyperactivation, endothelial dysfunction and chronic hyperparathyroidism have more recently been identified as important factors contributing to CKD-associated hypertension. Moreover, several drugs commonly administered in CKD, such as erythropoietin, glucocorticoids and cyclosporine A, independently raise blood pressure in a dose-dependent fashion. Because of the deleterious consequences of hypertension on the progression of renal disease and cardiovascular outcomes, an active screening approach should be adapted in patients with all stages of CKD. Before one starts antihypertensive treatment, non-pharmacological options should be explored. In hemodialysis patients a low salt diet, low dialysate sodium and stricter dialysis towards dry weight can often achieve adequate blood pressure control. Angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers are first-line therapy for patients with proteinuria, due to their additional anti-proteinuric properties. Diuretics are a useful alternative for non-proteinuric patients or as an add-on to renin–angiotensin system blockade. Multiple drug therapy is often needed to maintain blood pressure below the 90th percentile target, but adequate blood pressure control is essential for better renal and cardiovascular long-term outcomes
Eculizumab exposure in children and young adults: indications, practice patterns, and outcomes—a Pediatric Nephrology Research Consortium study
Background: Eculizumab is approved for the treatment of atypical hemolytic uremic syndrome (aHUS). Its use off-label is frequently reported. The aim of this study was to describe the broader use and outcomes of a cohort of pediatric patients exposed to eculizumab. Methods: A retrospective, cohort analysis was performed on the clinical and biomarker characteristics of eculizumab-exposed patients < 25 years of age seen across 21 centers of the Pediatric Nephrology Research Consortium. Patients were included if they received at least one dose of eculizumab between 2008 and 2015. Traditional summary statistics were applied to demographic and clinical data. Results: A total of 152 patients were identified, mean age 9.1 (+/−6.8) years. Eculizumab was used “off-label” in 44% of cases. The most common diagnoses were aHUS (47.4%), Shiga toxin-producing Escherichia coli HUS (12%), unspecified thrombotic microangiopathies (9%), and glomerulonephritis (9%). Genetic testing was available for 60% of patients; 20% had gene variants. Dosing regimens were variable. Kidney outcomes tended to vary according to diagnosis. Infectious adverse events were the most common adverse event (33.5%). No cases of meningitis were reported. Nine patients died of noninfectious causes while on therapy. Conclusions: This multi-center retrospective cohort analysis indicates that a significant number of children and young adults are being exposed to C5 blockade for off-label indications. Dosing schedules were highly variable, limiting outcome conclusions. Attributable adverse events appeared to be low. Cohort mortality (6.6%) was not insignificant. Prospective studies in homogenous disease cohorts are needed to support the role of C5 blockade in kidney outcomes
Molecular genetic analysis of podocyte genes in focal segmental glomerulosclerosis—a review
This review deals with podocyte proteins that play a significant role in the structure and function of the glomerular filter. Genetic linkage studies has identified several genes involved in the development of nephrotic syndrome and contributed to the understanding of the pathophysiology of glomerular proteinuria and/or focal segmental glomerulosclerosis. Here, we describe already well-characterized genetic diseases due to mutations in nephrin, podocin, CD2AP, alpha-actinin-4, WT1, and laminin β2 chain, as well as more recently identified genetic abnormalities in TRPC6, phospholipase C epsilon, and the proteins encoded by the mitochondrial genome. In addition, the role of the proteins which have shown to be important for the structure and functions by gene knockout studies in mice, are also discussed. Furthermore, some rare syndromes with glomerular involvement, in which molecular defects have been recently identified, are briefly described. In summary, this review updates the current knowledge of genetic causes of congenital and childhood nephrotic syndrome and provides new insights into mechanisms of glomerular dysfunction
The role of epigenetics in renal ageing
An ability to separate natural ageing processes from processes specific to morbidities is required to understand the heterogeneity of age-related organ dysfunction. Mechanistic insight into how epigenetic factors regulate ageing throughout the life course, linked to a decline in renal function with ageing, is already proving to be of value in the analyses of clinical and epidemiological cohorts. Noncoding RNAs provide epigenetic regulatory circuits within the kidney, which reciprocally interact with DNA methylation processes, histone modification and chromatin. These interactions have been demonstrated to reflect the biological age and function of renal allografts. Epigenetic factors control gene expression and activity in response to environmental perturbations. They also have roles in highly conserved signalling pathways that modulate ageing, including the mTOR and insulin/insulin-like growth factor signalling pathways, and regulation of sirtuin activity. Nutrition, the gut microbiota, inflammation and environmental factors, including psychosocial and lifestyle stresses, provide potential mechanistic links between the epigenetic landscape of ageing and renal dysfunction. Approaches to modify the renal epigenome via nutritional intervention, targeting the methylome or targeting chromatin seem eminently feasible, although caution is merited owing to the potential for intergenerational and transgenerational effects
- …