988 research outputs found
Comment on ``Lyapunov Exponent of a Many Body System and Its Transport Coefficients''
In a recent Letter, Barnett, Tajima, Nishihara, Ueshima and Furukawa obtained
a theoretical expression for the maximum Lyapunov exponent of a
dilute gas. They conclude that is proportional to the cube root of
the self-diffusion coefficient , independent of the range of the interaction
potential. They validate their conjecture with numerical data for a dense
one-component plasma, a system with long-range forces. We claim that their
result is highly non-generic. We show in the following that it does not apply
to a gas of hard spheres, neither in the dilute nor in the dense phase.Comment: 1 page, Revtex - 1 PS Figs - Submitted to Physical Review Letter
Health services research in the public healthcare system in Hong Kong: An analysis of over 1 million antihypertensive prescriptions between 2004-2007 as an example of the potential and pitfalls of using routinely collected electronic patient data
<b>Objectives</b> Increasing use is being made of routinely collected electronic patient data in health services research. The aim of the present study was to evaluate the potential usefulness of a comprehensive database used routinely in the public healthcare system in Hong Kong, using antihypertensive drug prescriptions in primary care as an example.<p></p>
<b>Methods</b> Data on antihypertensive drug prescriptions were retrieved from the electronic Clinical Management System (e-CMS) of all primary care clinics run by the Health Authority (HA) in the New Territory East (NTE) cluster of Hong Kong between January 2004 and June 2007. Information was also retrieved on patients’ demographic and socioeconomic characteristics, visit type (new or follow-up), and relevant diseases (International Classification of Primary Care, ICPC codes). <p></p>
<b>Results</b> 1,096,282 visit episodes were accessed, representing 93,450 patients. Patients’ demographic and socio-economic details were recorded in all cases. Prescription details for anti-hypertensive drugs were missing in only 18 patients (0.02%). However, ICPC-code was missing for 36,409 patients (39%). Significant independent predictors of whether disease codes were applied included patient age > 70 years (OR 2.18), female gender (OR 1.20), district of residence (range of ORs in more rural districts; 0.32-0.41), type of clinic (OR in Family Medicine Specialist Clinics; 1.45) and type of visit (OR follow-up visit; 2.39). <p></p>
In the 57,041 patients with an ICPC-code, uncomplicated hypertension (ICPC K86) was recorded in 45,859 patients (82.1%). The characteristics of these patients were very similar to those of the non-coded group, suggesting that most non-coded patients on antihypertensive drugs are likely to have uncomplicated hypertension. <p></p>
<b>Conclusion</b> The e-CMS database of the HA in Hong Kong varies in quality in terms of recorded information. Potential future health services research using demographic and prescription information is highly feasible but for disease-specific research dependant on ICPC codes some caution is warranted. In the case of uncomplicated hypertension, future research on pharmaco-epidemiology (such as prescription patterns) and clinical issues (such as side-effects of medications on metabolic parameters) seems feasible given the large size of the data set and the comparability of coded and non-coded patients
Multiphoton radiative recombination of electron assisted by laser field
In the presence of an intensive laser field the radiative recombination of
the continuum electron into an atomic bound state generally is accompanied by
absorption or emission of several laser quanta. The spectrum of emitted photons
represents an equidistant pattern with the spacing equal to the laser
frequency. The distribution of intensities in this spectrum is studied
employing the Keldysh-type approximation, i.e. neglecting interaction of the
impact electron with the atomic core in the initial continuum state. Within the
adiabatic approximation the scale of emitted photon frequencies is subdivided
into classically allowed and classically forbidden domains. The highest
intensities correspond to emission frequencies close to the edges of
classically allowed domain. The total cross section of electron recombination
summed over all emitted photon channels exhibits negligible dependence on the
laser field intensity.Comment: 14 pages, 5 figures (Figs.2-5 have "a" and "b" parts), Phys.Rev.A
accepted for publication. Fig.2b is presented correctl
Measurement of the double-\beta decay half-life of ^{136}Xe with the KamLAND-Zen experiment
We present results from the KamLAND-Zen double-beta decay experiment based on
an exposure of 77.6 days with 129 kg of Xe. The measured two-neutrino
double-beta decay half-life of Xe is yr, consistent with a recent
measurement by EXO-200. We also obtain a lower limit for the neutrinoless
double-beta decay half-life, yr at 90%
confidence level (C.L.), which corresponds to almost a five-fold improvement
over previous limits.Comment: 6 pages, 4 figures. Version as published in PR
White paper: CeLAND - Investigation of the reactor antineutrino anomaly with an intense 144Ce-144Pr antineutrino source in KamLAND
We propose to test for short baseline neutrino oscillations, implied by the
recent reevaluation of the reactor antineutrino flux and by anomalous results
from the gallium solar neutrino detectors. The test will consist of producing a
75 kCi 144Ce - 144Pr antineutrino source to be deployed in the Kamioka Liquid
Scintillator Anti-Neutrino Detector (KamLAND). KamLAND's 13m diameter target
volume provides a suitable environment to measure energy and position
dependence of the detected neutrino flux. A characteristic oscillation pattern
would be visible for a baseline of about 10 m or less, providing a very clean
signal of neutrino disappearance into a yet-unknown, "sterile" state. Such a
measurement will be free of any reactor-related uncertainties. After 1.5 years
of data taking the Reactor Antineutrino Anomaly parameter space will be tested
at > 95% C.L.Comment: White paper prepared for Snowmass-2013; slightly different author
lis
Nucleus-Electron Model for States Changing from a Liquid Metal to a Plasma and the Saha Equation
We extend the quantal hypernetted-chain (QHNC) method, which has been proved
to yield accurate results for liquid metals, to treat a partially ionized
plasma. In a plasma, the electrons change from a quantum to a classical fluid
gradually with increasing temperature; the QHNC method applied to the electron
gas is in fact able to provide the electron-electron correlation at arbitrary
temperature. As an illustrating example of this approach, we investigate how
liquid rubidium becomes a plasma by increasing the temperature from 0 to 30 eV
at a fixed normal ion-density . The electron-ion
radial distribution function (RDF) in liquid Rb has distinct inner-core and
outer-core parts. Even at a temperature of 1 eV, this clear distinction remains
as a characteristic of a liquid metal. At a temperature of 3 eV, this
distinction disappears, and rubidium becomes a plasma with the ionization 1.21.
The temperature variations of bound levels in each ion and the average
ionization are calculated in Rb plasmas at the same time. Using the
density-functional theory, we also derive the Saha equation applicable even to
a high-density plasma at low temperatures. The QHNC method provides a procedure
to solve this Saha equation with ease by using a recursive formula; the charge
population of differently ionized species are obtained in Rb plasmas at several
temperatures. In this way, it is shown that, with the atomic number as the only
input, the QHNC method produces the average ionization, the electron-ion and
ion-ion RDF's, and the charge population which are consistent with the atomic
structure of each ion for a partially ionized plasma.Comment: 28 pages(TeX) and 11 figures (PS
A compact ultra-clean system for deploying radioactive sources inside the KamLAND detector
We describe a compact, ultra-clean device used to deploy radioactive sources
along the vertical axis of the KamLAND liquid-scintillator neutrino detector
for purposes of calibration. The device worked by paying out and reeling in
precise lengths of a hanging, small-gauge wire rope (cable); an assortment of
interchangeable radioactive sources could be attached to a weight at the end of
the cable. All components exposed to the radiopure liquid scintillator were
made of chemically compatible UHV-cleaned materials, primarily stainless steel,
in order to avoid contaminating or degrading the scintillator. To prevent radon
intrusion, the apparatus was enclosed in a hermetically sealed housing inside a
glove box, and both volumes were regularly flushed with purified nitrogen gas.
An infrared camera attached to the side of the housing permitted real-time
visual monitoring of the cable's motion, and the system was controlled via a
graphical user interface.Comment: Revised author affiliations, corrected typos, made minor improvements
to text, and revised reference
Search for Matter-Dependent Atmospheric Neutrino Oscillations in Super-Kamiokande
We consider muon neutrino to tau neutrino oscillations in the context of the
Mass Varying Neutrino (MaVaN) model, where the neutrino mass can vary depending
on the electron density along the flight path of the neutrino. Our analysis
assumes a mechanism with dependence only upon the electron density, hence
ordinary matter density, of the medium through which the neutrino travels.
Fully-contained, partially-contained and upward-going muon atmospheric neutrino
data from the Super--Kamiokande detector, taken from the entire SK--I period of
1489 live days, are compared to MaVaN model predictions. We find that, for the
case of 2-flavor oscillations, and for the specific models tested, oscillation
independent of electron density is favored over density dependence. Assuming
maximal mixing, the best-fit case and the density-independent case do not
differ significantly.Comment: 6 pages, 1 figur
7Be Solar Neutrino Measurement with KamLAND
We report a measurement of the neutrino-electron elastic scattering rate of
862 keV 7Be solar neutrinos based on a 165.4 kton-day exposure of KamLAND. The
observed rate is 582 +/- 90 (kton-day)^-1, which corresponds to a 862 keV 7Be
solar neutrino flux of (3.26 +/- 0.50) x 10^9 cm^-2s^-1, assuming a pure
electron flavor flux. Comparing this flux with the standard solar model
prediction and further assuming three flavor mixing, a nu_e survival
probability of 0.66 +/- 0.14 is determined from the KamLAND data. Utilizing a
global three flavor oscillation analysis, we obtain a total 7Be solar neutrino
flux of (5.82 +/- 0.98) x 10^9 cm^-2s^-1, which is consistent with the standard
solar model predictions.Comment: 8 pages, 6 figures, submitted to Phys. Rev.
Atmospheric neutrino oscillation analysis with sub-leading effects in Super-Kamiokande I, II, and III
We present a search for non-zero theta_{13} and deviations of sin^2
theta_{23} from 0.5 in the oscillations of atmospheric neutrino data from
Super-Kamiokande -I, -II, and -III. No distortions of the neutrino flux
consistent with non-zero theta_{13} are found and both neutrino mass hierarchy
hypotheses are in agreement with the data. The data are best fit at Delta m^2 =
2.1 x 10^-3 eV^2, sin^2 theta_{13} = 0.0, and sin^2 theta_{23} =0.5. In the
normal (inverted) hierarchy theta_{13} and Delta m^2 are constrained at the
one-dimensional 90% C.L. to sin^2 theta_{13} < 0.04 (0.09) and 1.9 (1.7) x
10^-3 < Delta m^2 < 2.6 (2.7) x 10^-3 eV^2. The atmospheric mixing angle is
within 0.407 <= sin^2 theta_{23} <= 0.583 at 90% C.L.Comment: 17 Pages, 14 figures. To be submitted to Phys. Rev. D Minor update to
text after referee comments. Figures modified for better grayscale printing
- …
