1,335 research outputs found
Lambda polarization in pp -> p\Lambda K^+ \pi^+\pi^-\pi^+\pi^-
We show that there is a correlation between the invariant mass of the
produced \Lambda K^+, \Lambda K^+\pi^+\pi^- or \Lambda K^+ \pi^+\pi^-\pi^+\pi^-
system in the exclusive reaction pp\to p\Lambda K^+\pi^+\pi^-\pi^+\pi^- and the
longitudinal or transverse momentum of . Together with the
longitudinal and transverse momentum dependence of Lambda polarization observed
in inclusive reactions, such a correlation implies a dependence of Lambda
polarization on these invariant masses. The qualitative features of this
dependence are consistent with the recent observation by E766 collaboration at
BNL. A quantitative estimation has been made using an event generator for
collisions. A detailed comparison with the data is made.Comment: 10 pages with 3 figures, submitted to J. Phys.
One dimensional chain of quantum molecule motors as a mathematical physics model for muscle fibre
A quantum chain model of many molecule motors is proposed as a mathematical
physics theory on the microscopic modeling of classical force-velocity relation
and tension transients of muscle fibre. We proposed quantum many-particle
Hamiltonian to predict the force-velocity relation for the slow release of
muscle fibre which has no empirical relation yet, it is much more complicate
than hyperbolic relation. Using the same Hamiltonian, we predicted the
mathematical force-velocity relation when the muscle is stimulated by
alternative electric current. The discrepancy between input electric frequency
and the muscle oscillation frequency has a physical understanding by Doppler
effect in this quantum chain model. Further more, we apply quantum physics
phenomena to explore the tension time course of cardiac muscle and insect
flight muscle. Most of the experimental tension transients curves found their
correspondence in the theoretical output of quantum two-level and three-level
model. Mathematically modeling electric stimulus as photons exciting a quantum
three-level particle reproduced most tension transient curves of water bug
Lethocerus Maximus.Comment: 16 pages, 12 figures, Arguments are adde
Kondo Phase Transitions of Magnetic Impurities in Carbon Nanotubes
We propose carbon nanotubes (CNTs) with magnetic impurities as a versatile
platform to achieve unconventional Kondo physics, where the CNT bath is gapped
by the spin-orbit interaction and surface curvature. While the strong-coupling
phase is inaccessible for the special case of half-filled impurities in neutral
armchair CNTs, the system in general can undergo quantum phase transitions to
the Kondo ground state. The resultant position-specific phase diagrams are
investigated upon variation of the CNT radius, chirality, and carrier doping,
revealing several striking features, e.g., the existence of a maximal radius
for nonarmchair CNTs to realize phase transitions, and an interference-induced
suppression of the Kondo screening. We show that by tuning the Fermi energy via
electrostatic gating, the quantum critical region can be experimentally
accessed.Comment: 5 papes, 2 figures, with a supplemental material (1 page, 1 figure
Effect of sulfate aerosol on tropospheric NOx and ozone budgets: Model simulations and TOPSE evidence
The distributions of NOx and O3 are analyzed during TOPSE (Tropospheric Ozone Production about the Spring Equinox). In this study these data are compared with the calculations of a global chemical/transport model (Model for OZone And Related chemical Tracers (MOZART)). Specifically, the effect that hydrolysis of N2O5 on sulfate aerosols has on tropospheric NOx and O3 budgets is studied. The results show that without this heterogeneous reaction, the model significantly overestimates NOx concentrations at high latitudes of the Northern Hemisphere (NH) in winter and spring in comparison to the observations during TOPSE; with this reaction, modeled NOx concentrations are close to the measured values. This comparison provides evidence that the hydrolysis of N2O5 on sulfate aerosol plays an important role in controlling the tropospheric NOx and O3 budgets. The calculated reduction of NOx attributed to this reaction is 80 to 90% in winter at high latitudes over North America. Because of the reduction of NOx, O3 concentrations are also decreased. The maximum O3reduction occurs in spring although the maximum NOx reduction occurs in winter when photochemical O3 production is relatively low. The uncertainties related to uptake coefficient and aerosol loading in the model is analyzed. The analysis indicates that the changes in NOxdue to these uncertainties are much smaller than the impact of hydrolysis of N2O5 on sulfate aerosol. The effect that hydrolysis of N2O5 on global NOx and O3 budgets are also assessed by the model. The results suggest that in the Northern Hemisphere, the average NOx budget decreases 50% due to this reaction in winter and 5% in summer. The average O3 budget is reduced by 8% in winter and 6% in summer. In the Southern Hemisphere (SH), the sulfate aerosol loading is significantly smaller than in the Northern Hemisphere. As a result, sulfate aerosol has little impact on NOx and O3 budgets of the Southern Hemisphere
Late-Stage Maturation of the Rieske Fe/S Protein: Mzm1 Stabilizes Rip1 but Does Not Facilitate Its Translocation by the AAA ATPase Bcs1
The final step in the assembly of the ubiquinol-cytochrome c reductase or bc1 complex involves the insertion of the Rieske Fe/S cluster protein, Rip1. Maturation of Rip1 occurs within the mitochondrial matrix prior to its translocation across the inner membrane (IM) in a process mediated by the Bcs1 ATPase and subsequent insertion into the bc1 complex. Here we show that the matrix protein Mzm1 functions as a Rip1 chaperone, stabilizing Rip1 prior to the translocation step. In the absence of Mzm1, Rip1 is prone to either proteolytic degradation or temperature-induced aggregation. A series of Rip1 truncations were engineered to probe motifs necessary for Mzm1 interaction and Bcs1-mediated translocation of Rip1. The Mzm1 interaction with Rip1 persists in Rip1 variants lacking its transmembrane domain or containing only its C-terminal globular Fe/S domain. Replacement of the globular domain of Rip1 with that of the heterologous folded protein Grx3 abrogated Mzm1 interaction; however, appending the C-terminal 30 residues of Rip1 to the Rip1-Grx3 chimera restored Mzm1 interaction. The Rip1-Grx3 chimera and a Rip1 truncation containing only the N-terminal 92 residues each induced stabilization of the bc1:cytochrome oxidase supercomplex in a Bcs1-dependent manner. However, the Rip1 variants were not stably associated with the supercomplex. The induced supercomplex stabilization by the Rip1 N terminus was independent of Mzm1
Late-Stage Maturation of the Rieske Fe/S Protein: Mzm1 Stabilizes Rip1 but Does Not Facilitate Its Translocation by the AAA ATPase Bcs1
The final step in the assembly of the ubiquinol-cytochrome c reductase or bc1 complex involves the insertion of the Rieske Fe/S cluster protein, Rip1. Maturation of Rip1 occurs within the mitochondrial matrix prior to its translocation across the inner membrane (IM) in a process mediated by the Bcs1 ATPase and subsequent insertion into the bc1 complex. Here we show that the matrix protein Mzm1 functions as a Rip1 chaperone, stabilizing Rip1 prior to the translocation step. In the absence of Mzm1, Rip1 is prone to either proteolytic degradation or temperature-induced aggregation. A series of Rip1 truncations were engineered to probe motifs necessary for Mzm1 interaction and Bcs1-mediated translocation of Rip1. The Mzm1 interaction with Rip1 persists in Rip1 variants lacking its transmembrane domain or containing only its C-terminal globular Fe/S domain. Replacement of the globular domain of Rip1 with that of the heterologous folded protein Grx3 abrogated Mzm1 interaction; however, appending the C-terminal 30 residues of Rip1 to the Rip1-Grx3 chimera restored Mzm1 interaction. The Rip1-Grx3 chimera and a Rip1 truncation containing only the N-terminal 92 residues each induced stabilization of the bc1:cytochrome oxidase supercomplex in a Bcs1-dependent manner. However, the Rip1 variants were not stably associated with the supercomplex. The induced supercomplex stabilization by the Rip1 N terminus was independent of Mzm1
- …