605 research outputs found

    Does a black hole rotate in Chern-Simons modified gravity?

    Get PDF
    Rotating black hole solutions in the (3+1)-dimensional Chern-Simons modified gravity theory are discussed by taking account of perturbation around the Schwarzschild solution. The zenith-angle dependence of a metric function related to the frame-dragging effect is determined from a constraint equation independently of a choice of the embedding coordinate. We find that at least within the framework of the first-order perturbation method, the black hole cannot rotate for finite black hole mass if the embedding coordinate is taken to be a timelike vector. However, the rotation can be permitted in the limit of M/r0M/r \to 0 (where MM is the black hole mass and rr is the radius). For a spacelike vector, the rotation can also be permitted for any value of the black hole mass.Comment: 4 pages, Accepted for publication in Phys. Rev.

    Flat rotation curves in Chern-Simons modified gravity

    Get PDF
    We investigate the spacetime of a slowly rotating black hole in the Chern-Simons modified gravity. The long range feature of frame-dragging effect under the Chern-Simon gravity well explains the flat rotation curves of galaxies which is a central evidence of dark matter. Our solution provides a different scenario of rotating space from Goedel's solution.Comment: 4 pages, Accepted for publication in Phys. Rev.

    Asteroseismic Modeling of 1,153 Kepler Red Giant Branch Stars: Improved Stellar Parameters with Gravity-Mode Period Spacings and Luminosity Constraints

    Full text link
    This paper reports estimated stellar parameters of 1,153 Kepler red giant branch stars determined with asteroseismic modeling. We use radial-mode oscillation frequencies, gravity-mode period spacings, Gaia luminosities, and spectroscopic data to characterize these stars. Compared with previous studies, we find that the two additional observed constraints, i.e., the gravity-mode period spacing and luminosity, significantly improve the precision of fundamental stellar parameters. The typical uncertainties are 2.9% for the mass, 11% for the age, 1.0% for the radius, 0.0039 dex for the surface gravity, and 0.5\% for the helium core mass, making this the best-characterized large sample of red-giant stars available to date. With better characterizations for these red giants, we recalibrate the seismic scaling relations and study the surface term on the red-giant branch. We confirm that the surface term depends on the surface gravity and effective temperature, but there is no significant correlation with metallicity.Comment: Accepted by Ap

    Geometrically Frustrated Crystals: Elastic Theory and Dislocations

    Full text link
    Elastic theory of ring-(or cylinder-)shaped crystals is constructed and the generation of edge dislocations due to geometrical frustration caused by the bending is studied. The analogy to superconducting (or superfluid) vortex state is pointed out and the phase diagram of the ring-crystal, which depends on radius and thickness, is discussed.Comment: 4 pages, 3 figure

    Magnetic Structure of Nano-Graphite Moebius Ribbon

    Full text link
    We consider the electronic and magnetic properties of nanographite ribbon with zigzag edges under the periodic or Moebius boundary conditions. The zigzag nano-graphite ribbons possess edge localized states at the Fermi level which cause a ferrimagnetic spin polarization localized at the edge sites even in the very weak Coulomb interaction. The imposition of the Moebius boundary condition makes the system non-AB-bipartite lattice, and depress the spin polarization, resulting in the formation of a magnetic domain wall. The width of the magnetic domain depends on the Coulomb interaction and narrows with increasing U/t.Comment: 4 pages; 6 figures; published at J. Phys. Soc. Jpn. Vol. 72 No. 5 pp. 998-1001 (2003
    corecore