605 research outputs found
Does a black hole rotate in Chern-Simons modified gravity?
Rotating black hole solutions in the (3+1)-dimensional Chern-Simons modified
gravity theory are discussed by taking account of perturbation around the
Schwarzschild solution. The zenith-angle dependence of a metric function
related to the frame-dragging effect is determined from a constraint equation
independently of a choice of the embedding coordinate. We find that at least
within the framework of the first-order perturbation method, the black hole
cannot rotate for finite black hole mass if the embedding coordinate is taken
to be a timelike vector. However, the rotation can be permitted in the limit of
(where is the black hole mass and is the radius). For a
spacelike vector, the rotation can also be permitted for any value of the black
hole mass.Comment: 4 pages, Accepted for publication in Phys. Rev.
Flat rotation curves in Chern-Simons modified gravity
We investigate the spacetime of a slowly rotating black hole in the
Chern-Simons modified gravity. The long range feature of frame-dragging effect
under the Chern-Simon gravity well explains the flat rotation curves of
galaxies which is a central evidence of dark matter. Our solution provides a
different scenario of rotating space from Goedel's solution.Comment: 4 pages, Accepted for publication in Phys. Rev.
Asteroseismic Modeling of 1,153 Kepler Red Giant Branch Stars: Improved Stellar Parameters with Gravity-Mode Period Spacings and Luminosity Constraints
This paper reports estimated stellar parameters of 1,153 Kepler red giant
branch stars determined with asteroseismic modeling. We use radial-mode
oscillation frequencies, gravity-mode period spacings, Gaia luminosities, and
spectroscopic data to characterize these stars. Compared with previous studies,
we find that the two additional observed constraints, i.e., the gravity-mode
period spacing and luminosity, significantly improve the precision of
fundamental stellar parameters. The typical uncertainties are 2.9% for the
mass, 11% for the age, 1.0% for the radius, 0.0039 dex for the surface gravity,
and 0.5\% for the helium core mass, making this the best-characterized large
sample of red-giant stars available to date. With better characterizations for
these red giants, we recalibrate the seismic scaling relations and study the
surface term on the red-giant branch. We confirm that the surface term depends
on the surface gravity and effective temperature, but there is no significant
correlation with metallicity.Comment: Accepted by Ap
Geometrically Frustrated Crystals: Elastic Theory and Dislocations
Elastic theory of ring-(or cylinder-)shaped crystals is constructed and the
generation of edge dislocations due to geometrical frustration caused by the
bending is studied. The analogy to superconducting (or superfluid) vortex state
is pointed out and the phase diagram of the ring-crystal, which depends on
radius and thickness, is discussed.Comment: 4 pages, 3 figure
Magnetic Structure of Nano-Graphite Moebius Ribbon
We consider the electronic and magnetic properties of nanographite ribbon
with zigzag edges under the periodic or Moebius boundary conditions. The zigzag
nano-graphite ribbons possess edge localized states at the Fermi level which
cause a ferrimagnetic spin polarization localized at the edge sites even in the
very weak Coulomb interaction. The imposition of the Moebius boundary condition
makes the system non-AB-bipartite lattice, and depress the spin polarization,
resulting in the formation of a magnetic domain wall. The width of the magnetic
domain depends on the Coulomb interaction and narrows with increasing U/t.Comment: 4 pages; 6 figures; published at J. Phys. Soc. Jpn. Vol. 72 No. 5 pp.
998-1001 (2003
- …