462 research outputs found
Ignorance is bliss: General and robust cancellation of decoherence via no-knowledge quantum feedback
A "no-knowledge" measurement of an open quantum system yields no information
about any system observable; it only returns noise input from the environment.
Surprisingly, performing such a no-knowledge measurement can be advantageous.
We prove that a system undergoing no-knowledge monitoring has reversible noise,
which can be cancelled by directly feeding back the measurement signal. We show
how no-knowledge feedback control can be used to cancel decoherence in an
arbitrary quantum system coupled to a Markovian reservoir that is being
monitored. Since no-knowledge feedback does not depend on the system state or
Hamiltonian, such decoherence cancellation is guaranteed to be general, robust
and can operate in conjunction with any other quantum control protocol. As an
application, we show that no-knowledge feedback could be used to improve the
performance of dissipative quantum computers subjected to local loss.Comment: 6 pages + 2 pages supplemental material, 3 figure
Continuous measurement feedback control of a Bose-Einstein condensate using phase contrast imaging
We consider the theory of feedback control of a Bose-Einstein condensate
(BEC) confined in a harmonic trap under a continuous measurement constructed
via non-destructive imaging. A filtering theory approach is used to derive a
stochastic master equation (SME) for the system from a general Hamiltonian
based upon system-bath coupling. Numerical solutions for this SME in the limit
of a single atom show that the final steady state energy is dependent upon the
measurement strength, the ratio of photon kinetic energy to atomic kinetic
energy, and the feedback strength. Simulations indicate that for a weak
measurement strength, feedback can be used to overcome heating introduced by
the scattering of light, thereby allowing the atom to be driven towards the
ground state.Comment: 4 figures, 11 page
Controlling chaos in the quantum regime using adaptive measurements
The continuous monitoring of a quantum system strongly influences the
emergence of chaotic dynamics near the transition from the quantum regime to
the classical regime. Here we present a feedback control scheme that uses
adaptive measurement techniques to control the degree of chaos in the
driven-damped quantum Duffing oscillator. This control relies purely on the
measurement backaction on the system, making it a uniquely quantum control, and
is only possible due to the sensitivity of chaos to measurement. We quantify
the effectiveness of our control by numerically computing the quantum Lyapunov
exponent over a wide range of parameters. We demonstrate that adaptive
measurement techniques can control the onset of chaos in the system, pushing
the quantum-classical boundary further into the quantum regime
Robustness of System-Filter Separation for the Feedback Control of a Quantum Harmonic Oscillator Undergoing Continuous Position Measurement
We consider the effects of experimental imperfections on the problem of
estimation-based feedback control of a trapped particle under continuous
position measurement. These limitations violate the assumption that the
estimator (i.e. filter) accurately models the underlying system, thus requiring
a separate analysis of the system and filter dynamics. We quantify the
parameter regimes for stable cooling, and show that the control scheme is
robust to detector inefficiency, time delay, technical noise, and miscalibrated
parameters. We apply these results to the specific context of a weakly
interacting Bose-Einstein condensate (BEC). Given that this system has
previously been shown to be less stable than a feedback-cooled BEC with strong
interatomic interactions, this result shows that reasonable experimental
imperfections do not limit the feasibility of cooling a BEC by continuous
measurement and feedback.Comment: 14 pages, 8 figure
Ab initio Wannier-function-based correlated calculations of Born effective charges of crystalline LiO and LiCl
In this paper we have used our recently developed ab initio
Wannier-function-based methodology to perform extensive Hartree-Fock and
correlated calculations on LiO and LiCl to compute their Born effective
charges. Results thus obtained are in very good agreement with the experiments.
In particular, for the case of LiO, we resolve a controversy originating
in the experiment of Osaka and Shindo {[}Solid State Commun. 51 (1984) 421] who
had predicted the effective charge of Li ions to be in the range 0.58--0.61, a
value much smaller compared to its nominal value of unity, thereby, suggesting
that the bonding in the material could be partially covalent. We demonstrate
that effective charge computed by Osaka and Shindo is the Szigeti charge, and
once the Born charge is computed, it is in excellent agreement with our
computed value. Mulliken population analysis of LiO also confirms ionic
nature of the bonding in the substance.Comment: 11 pages, 1 figure. To appear in Phys. Rev. B (Feb 2008
Feedback control of an interacting Bose-Einstein condensate using phase-contrast imaging
The linewidth of an atom laser is limited by density fluctuations in the Bose-Einstein condensate (BEC) from which the atom laser beam is outcoupled. In this paper we show that a stable spatial mode for an interacting BEC can be generated using a realistic control scheme that includes the effects of the measurement backaction. This model extends the feedback theory, based on a phase-contrast imaging setup, presented by Szigeti, Hush, Carvalho, and Hope [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.80.013614 80, 013614 (2009)]. In particular, it is applicable to a BEC with large interatomic interactions and solves the problem of inadequacy of the mean-field (coherent state) approximation by utilizing a fixed number state approximation. Our numerical analysis shows the control to be more effective for a condensate with a large nonlinearity
Quantum tunneling dynamics of an interacting Bose-Einstein condensate through a Gaussian barrier
The transmission of an interacting Bose-Einstein condensate incident on a
repulsive Gaussian barrier is investigated through numerical simulation. The
dynamics associated with interatomic interactions are studied across a broad
parameter range not previously explored. Effective 1D Gross-Pitaevskii equation
(GPE) simulations are compared to classical Boltzmann-Vlasov equation (BVE)
simulations in order to isolate purely coherent matterwave effects. Quantum
tunneling is then defined as the portion of the GPE transmission not described
by the classical BVE. An exponential dependence of transmission on barrier
height is observed in the purely classical simulation, suggesting that
observing such exponential dependence is not a sufficient condition for quantum
tunneling. Furthermore, the transmission is found to be predominately described
by classical effects, although interatomic interactions are shown to modify the
magnitude of the quantum tunneling. Interactions are also seen to affect the
amount of classical transmission, producing transmission in regions where the
non-interacting equivalent has none. This theoretical investigation clarifies
the contribution quantum tunneling makes to overall transmission in
many-particle interacting systems, potentially informing future tunneling
experiments with ultracold atoms.Comment: Close to the published versio
Precision atomic gravimeter based on Bragg diffraction
We present a precision gravimeter based on coherent Bragg diffraction of
freely falling cold atoms. Traditionally, atomic gravimeters have used
stimulated Raman transitions to separate clouds in momentum space by driving
transitions between two internal atomic states. Bragg interferometers utilize
only a single internal state, and can therefore be less susceptible to
environmental perturbations. Here we show that atoms extracted from a
magneto-optical trap using an accelerating optical lattice are a suitable
source for a Bragg atom interferometer, allowing efficient beamsplitting and
subsequent separation of momentum states for detection. Despite the inherently
multi-state nature of atom diffraction, we are able to build a Mach-Zehnder
interferometer using Bragg scattering which achieves a sensitivity to the
gravitational acceleration of with an
integration time of 1000s. The device can also be converted to a gravity
gradiometer by a simple modification of the light pulse sequence.Comment: 13 pages, 11 figure
DNA methylation-associated colonic mucosal immune and defense responses in treatment-naïve pediatric ulcerative colitis
Inflammatory bowel diseases (IBD) are emerging globally, indicating that environmental factors may be important in their pathogenesis. Colonic mucosal epigenetic changes, such as DNA methylation, can occur in response to the environment and have been implicated in IBD pathology. However, mucosal DNA methylation has not been examined in treatment-naïve patients. We studied DNA methylation in untreated, left sided colonic biopsy specimens using the Infinium HumanMethylation450 BeadChip array. We analyzed 22 control (C) patients, 15 untreated Crohn’s disease (CD) patients, and 9 untreated ulcerative colitis (UC) patients from two cohorts. Samples obtained at the time of clinical remission from two of the treatment-naïve UC patients were also included into the analysis. UC-specific gene expression was interrogated in a subset of adjacent samples (5 C and 5 UC) using the Affymetrix GeneChip PrimeView Human Gene Expression Arrays. Only treatment-naïve UC separated from control. One-hundred-and-twenty genes with significant expression change in UC (> 2-fold, P < 0.05) were associated with differentially methylated regions (DMRs). Epigenetically associated gene expression changes (including gene expression changes in the IFITM1, ITGB2, S100A9, SLPI, SAA1, and STAT3 genes) were linked to colonic mucosal immune and defense responses. These findings underscore the relationship between epigenetic changes and inflammation in pediatric treatment-naïve UC and may have potential etiologic, diagnostic, and therapeutic relevance for IBD
- …