2,857 research outputs found

    On the Capacity of the Finite Field Counterparts of Wireless Interference Networks

    Full text link
    This work explores how degrees of freedom (DoF) results from wireless networks can be translated into capacity results for their finite field counterparts that arise in network coding applications. The main insight is that scalar (SISO) finite field channels over Fpn\mathbb{F}_{p^n} are analogous to n x n vector (MIMO) channels in the wireless setting, but with an important distinction -- there is additional structure due to finite field arithmetic which enforces commutativity of matrix multiplication and limits the channel diversity to n, making these channels similar to diagonal channels in the wireless setting. Within the limits imposed by the channel structure, the DoF optimal precoding solutions for wireless networks can be translated into capacity optimal solutions for their finite field counterparts. This is shown through the study of the 2-user X channel and the 3-user interference channel. Besides bringing the insights from wireless networks into network coding applications, the study of finite field networks over Fpn\mathbb{F}_{p^n} also touches upon important open problems in wireless networks (finite SNR, finite diversity scenarios) through interesting parallels between p and SNR, and n and diversity.Comment: Full version of paper accepted for presentation at ISIT 201

    Performance of wind turbines in a turbulent atmosphere

    Get PDF
    The effect of atmospheric turbulence on the power fluctuations of large wind turbines was studied. The significance of spatial non-uniformities of the wind is emphasized. The turbulent wind with correlation in time and space is simulated on the computer by Shinozukas method. The wind turbulence is modelled according to the Davenport spectrum with an exponential spatial correlation function. The rotor aerodynamics is modelled by simple blade element theory. Comparison of the spectrum of power output signal between 1-D and 3-D turbulence, shows the significant power fluctuations centered around the blade passage frequency

    Construction of Block Orthogonal STBCs and Reducing Their Sphere Decoding Complexity

    Full text link
    Construction of high rate Space Time Block Codes (STBCs) with low decoding complexity has been studied widely using techniques such as sphere decoding and non Maximum-Likelihood (ML) decoders such as the QR decomposition decoder with M paths (QRDM decoder). Recently Ren et al., presented a new class of STBCs known as the block orthogonal STBCs (BOSTBCs), which could be exploited by the QRDM decoders to achieve significant decoding complexity reduction without performance loss. The block orthogonal property of the codes constructed was however only shown via simulations. In this paper, we give analytical proofs for the block orthogonal structure of various existing codes in literature including the codes constructed in the paper by Ren et al. We show that codes formed as the sum of Clifford Unitary Weight Designs (CUWDs) or Coordinate Interleaved Orthogonal Designs (CIODs) exhibit block orthogonal structure. We also provide new construction of block orthogonal codes from Cyclic Division Algebras (CDAs) and Crossed-Product Algebras (CPAs). In addition, we show how the block orthogonal property of the STBCs can be exploited to reduce the decoding complexity of a sphere decoder using a depth first search approach. Simulation results of the decoding complexity show a 30% reduction in the number of floating point operations (FLOPS) of BOSTBCs as compared to STBCs without the block orthogonal structure.Comment: 16 pages, 7 figures; Minor changes in lemmas and construction

    Reckoning of the Divided Self

    Get PDF
    Using a personal narrative, this article describes a clinician\u27s journey through a peer-review process after committing a medical error. It strives to identify the limitations of a system that is created to identify medical errors without prioritizing clinician-well being and concludes that a culture of safety needs to acknowledge the humanity and inevitable fallibility of medical providers
    • …
    corecore