17 research outputs found

    Phase transitions of fluorotelomer alcohols at the water¦alkane interface studied via molecular dynamics simulation

    Get PDF
    Fluorosurfactants are long-lasting environmental pollutants that accumulate at interfaces ranging from aerosol droplet surfaces to cell membranes. Modeling of adsorption-based removal technologies for fluorosurfactants requires accurate simulation methods which can predict their adsorption isotherm and monolayer structure. Fluorotelomer alcohols with one or two methylene groups adjacent to the alcohol (7 : 1 FTOH and 6 : 2 FTOH, respectively) are investigated using the OPLS-AA force field at the water|hexane interface, varying the interfacial area per surfactant. The acquired interfacial pressure isotherms and monolayer phase behavior are compared with previous experimental results. The results are consistent with the experimental data inasmuch as, at realistic adsorption densities, only 7 : 1 FTOH shows a phase transition between liquid-expanded (LE) and 2D crystalline phases. Structures of the LE and crystalline phases are in good agreement with the sticky disc and Langmuir defective crystal models, respectively, used previously to interpret experimental data. Interfacial pressure of the LE phase agrees well with experiment, and sticky disc interaction parameters indicate no 2D LE–gas transition is present for either molecule. Conformation analysis reveals 7 : 1 FTOH favors conformers where the OH dipole is perpendicular to the molecular backbone, such that the crystalline phase is stabilized when these dipoles align

    Adsorption of Ions at Uncharged Insoluble Monolayers

    Get PDF
    A method is proposed for the experimental determination of the adsorption of inorganic electrolytes at a surface covered with insoluble surfactant monolayer. This task is complicated by the fact that the change of the salt concentration alters both chemical potentials of the electrolyte and the surfactant. Our method resolves the question by combining data for the surface pressure versus area of the monolayer at several salt concentrations with data for the equilibrium spreading pressure of crystals of the surfactant (used to fix a standard state). We applied the method to alcohols spread at the surface of concentrated halide solutions. The measured salt adsorption is positive and has nonmonotonic dependence on the area per surfactant molecule. For the liquid expanded film, depending on the concentration, there is one couple of ions adsorbed per each 3–30 surfactant molecules. We analyzed which ion, the positive or the negative, stands closer to the surface, by measuring the effect of NaCl on the Volta potential of the monolayer. The potentiometric data suggest that Na+ is specifically adsorbed, while Cl– remains in the diffuse layer, i.e., the surface is positively charged. The observed reverse Hofmeister series of the adsorptions of NaF, NaCl, and NaBr suggests the same conclusion holds for all these salts. The force that causes the adsorption of Na+ seems to be the interaction of the ion with the dipole moment of the monolayer

    Use of a porous membrane for gas bubble removal in microfluidic channels: physical mechanisms and design criteria

    Full text link
    We demonstrate and explain a simple and efficient way to remove gas bubbles from liquid-filled microchannels, by integrating a hydrophobic porous membrane on top of the microchannel. A prototype chip is manufactured in hard, transparent polymer with the ability to completely filter gas plugs out of a segmented flow at rates up to 7.4 microliter/s per mm2 of membrane area. The device involves a bubble generation section and a gas removal section. In the bubble generation section, a T-junction is used to generate a train of gas plugs into a water stream. These gas plugs are then transported towards the gas removal section, where they slide along a hydrophobic membrane until complete removal. The system has been successfully modeled and four necessary operating criteria have been determined to achieve a complete separation of the gas from the liquid. The first criterion is that the bubble length needs to be larger than the channel diameter. The second criterion is that the gas plug should stay on the membrane for a time sufficient to transport all the gas through the membrane. The third criterion is that the gas plug travel speed should be lower than a critical value: otherwise a stable liquid film between the bubble and the membrane prevents mass transfer. The fourth criterion is that the pressure difference across the membrane should not be larger than the Laplace pressure to prevent water from leaking through the membrane

    Characterization of capillary waves: a review and a new optical method

    No full text
    The methods to study capillary waves have been reviewed, together with the emerging practical applications of theirs and new theoretical developments in the field. The focus is on monochromatic ripples of frequency in the range 0.1-10 kHz. A capillary wave apparatus has been constructed that combines several recent advances on the technique. It is based on profilometry of waves decaying with distance, with a high-speed video camera detecting light refracted by the surface. A code to process the images has been developed that executes a regression analysis to determine the characteristics of the wave. High precision and accuracy have been achieved: standard deviation from the mean of ±0.5% for the wavelength and ±7% for the decay length; mean deviations from the theoretical values ±0.2% for the wavelength and ±5% for the decay length. An analytic approximation for the dispersion relation has been used to determine the Gibbs elasticity of a surfactant monolayer from the data for decay length vs. frequency. The elasticity of an octanol monolayer has been determined with precision of ±1 mN/m, in excellent agreement with the theoretical value. Surface tension can be measured from the wavelength data with precision of ±0.3 mN/m. It has been demonstrated that the effect of the surface elasticity on the wavelength is significant and accurate wavelength data can actually be used to determine the elasticity if the surface tension is known

    Processing code for optical characterization of flat capillary waves

    No full text
    This is the main module of a code for image processing of flat wave photographs (in two variants, Python and Maple). It produces an average profile of the wave which is then used to determine the wavelength and decay length via non-linear regression

    The role of NO2 and NO in the mechanism of hydrocarbon degradation leading to carbonaceous deposits in engines

    No full text
    A hypothetical mechanism of degradation of the fuel droplet leaking out from the injector nozzle in a direct injection combustion engine has been proposed recently. This involves as a key step a radical chain oxidation initiated by NO2 and branched by nitric oxide, NO, both produced by the combustion. The degradation causes the formation of injector nozzle carbonaceous deposits. The present work gives an experimental validation of some of the assumptions behind this model. An autoclave is used to oxidize isooctane under conditions relevant to the cylinder wall near the nozzle (~150 °C, 10 bar, 5% O2, 100 ppm of NO2 by mole and 500 ppm NO in the gas phase), and the degradation products are monitored via gas chromatography-mass spectrometry (GC–MS). The results show no observable fuel degradation in the absence of NOx. NO appears to be able to initiate a radical chain by producing NO2. Nitric oxide also alters the radical chain by transforming the alkyl peroxy radicals (ROO⋅) to more reactive alkoxy radicals (RO⋅), resulting in a range of different products. In addition, NO tends to terminate the radical chain by neutralizing a fraction of the alkyl peroxy radicals, producing alkyl nitrates as termination products. The existence of a radical chain is supported by demonstrating the antioxidative action of a radical scavenger. The chemical reaction mechanism is investigated, based on the detected products, and the key species involved in the degradation process are identified
    corecore