23 research outputs found

    MAPPING POTENTIAL HABITATS FOR ARTHROPOD VECTORS OF TRYPANOSOMIASIS INFECTION IN NORTHERN NIGERIA: AN INTRODUCTORY SYNTHESIS

    Get PDF
    This paper presents an introductory synthesis for mapping potential habitats of arthropod vectors responsible for animal trypanosomiasis diseases in Northern Nigeria, where there is high production of livestock. Animal trypanosomiasis is considered an arthropod-borne viral disease which is endemic in 36 countries of sub-Saharan Africa and particularly in northern Nigeria. The disease which is transmitted by the vector tsetse fly remains a threat to both humans and livestock in many rural communities of Nigeria. The outbreak of the disease is known to occur as a result of the changing climate which relates to changes in sea surface temperatures otherwise known as “El Niño Southern Oscillations” (ENSO). Trypanosomiasis is mainly experienced whenever there are changes in global precipitation as a result of the changing climate. Monthly Satellite data of Normalized Difference Vegetation Index (NDVI) at 2.5° spatial resolution was sourced from NASA-MODIS/CMD and subjected to principal component analysis using standardized principal components of GIS with a digital elevation model (DEM) supplemented in the analysis. Results revealed pockets of probable habitats of arthropod vectors to be around forest islands characterized by dry woodland and savanna, and in other cases around gallery forests and few lowland and riverine areas. This study demonstrates that geospatial technology is a cost effective tool in mapping of the arthropod vector habitats for Northern Nigeria

    Spatio-Temporal Pattern in the Changes in Availability and Sustainability of Water Resources in Afghanistan

    Get PDF
    Water is gradually becoming scarce in Afghanistan like in many other regions of the globe. The objective of this study was to evaluate the spatial changes in the availability and sustainability of water resources in Afghanistan. The Terrestrial Water Storage (TWS) data of the Gravity Recovery and Climate Experiment (GRACE) satellite obtained from three different institutes, having 1° × 1° spatial resolution for the period 2002–2016 was used for this purpose. Sen’s slope method was used to assess the rate of change, and the Modified Mann–Kendall test was used for the evaluation of the significance of trends in TWS. After, the concept of reliability–resiliency–vulnerability (RRV) was used for assessing the spatial distribution of sustainability in water resources. The results revealed a significant decrease in water availability in the country over the last 15 years. The decrease was found to be highest in the central region where most of the population of the country resides. The reliability in water resources was found high in the northeast Himalayan region and low in the southwest desert; resilience was found low in the central region, while the vulnerability was found high in the south and the southeast. Overall, the water resources of the country were found most sustainable in the northeast and southwest and least in the south and the central parts. The maps of water resource sustainability and the changes in water availability produced in the present study can be used for long-term planning of water resources for adaptation to global changes. Besides, those can be used for the management of water resources in a sustainable and judicious manner

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Zeolite-templated carbons as effective sorbents to remove methylsiloxanes and derivatives: A computational screening

    No full text
    Though widely used in our daily lives, volatile methylsiloxanes and derivatives are emerging contaminants and becoming a high-priority environment and public health concern. Developing effective sorbent materials can remove siloxanes in a cost-effective manner. Herein, by means of Grand Canonical Monte Carlo (GCMC) simulations, we evaluated the potentials of the recently proposed 68 stable zeolite-templated carbons (ZTCs) (PNAS 2018, 115, E8116-E8124) for the removal of four linear methylsiloxanes and derivatives as well as two cyclic methylsiloxanes by the calculated average loading and average adsorption energy values. Four ZTCs, namely ISV, FAU1, FAU3, and H8326836, were identified with the top 50% adsorption performance toward all the six targeted contaminants, which outperform activated carbons. Further first principles computations revealed that steric hindrance, electrostatic interactions (further enhanced by charge transfer), and CH-π interactions account for the outstanding adsorption performance of these ZTCs. This work provides a quick procedure to computationally screen promising ZTCs for siloxane removal, and help guide future experimental and theoretical investigations
    corecore