8,818 research outputs found
Determination of ball bearing dynamic stiffness
The dynamic radial stiffness characteristics of rolling element bearings are currently determined by analytical methods that have not been experimentally verified. These bearing data are vital to rotating machinery design integrity because accurate critical speeds and rotor stability predictions are highly dependent on the bearing stiffness. A tester was designed capable of controlling the bearing axial preload, speed, and rotor unbalance. The rotor and support structures were constructed to permit critical speeds that are predominantly determined by a 57 mm test bearing. A curve of calculated critical speed versus stiffness was used to determine the actual bearing stiffness from the empirical data. The results of extensive testing are used to verify analytical predictions, increase confidence in existing bearing computer programs, and to serve as a data base for efforts to correct these programs
Recommended from our members
The impact of resolution on the adjustment and decadal variability of the Atlantic Meridional Overturning Circulation in a coupled climate model
Variations in the Atlantic Meridional Overturning Circulation (MOC) exert an important influence on climate, particularly on decadal time scales. Simulation of the MOC in coupled climate models is compromised, to a degree that is unknown, by their lack of fidelity in resolving some of the key processes involved. There is an overarching need to increase the resolution and fidelity of climate models, but also to assess how increases in resolution influence the simulation of key phenomena such as the MOC.
In this study we investigate the impact of significantly increasing the (ocean and atmosphere) resolution of a coupled climate model on the simulation of MOC variability by comparing high and low resolution versions of the same model. In both versions, decadal variability of the MOC is closely linked to density anomalies that propagate from the Labrador Sea southward along the deep western boundary. We demonstrate that the MOC adjustment proceeds more rapidly in the higher resolution model due the increased speed of western boundary waves. However, the response of the Atlantic Sea Surface Temperatures (SSTs) to MOC variations is relatively robust - in pattern if not in magnitude - across the two resolutions. The MOC also excites a coupled ocean-atmosphere response in the tropical Atlantic in both model versions. In the higher resolution model, but not the lower resolution model, there is evidence of a significant response in the extratropical atmosphere over the North Atlantic 6 years after a maximum in the MOC. In both models there is evidence of a weak negative feedback on deep density anomalies in the Labrador Sea, and hence on the MOC (with a time scale of approximately ten years). Our results highlight the need for further work to understand the decadal variability of the MOC and its simulation in climate models
The Global Star Formation Rate from the 1.4 GHz Luminosity Function
The decimetric luminosity of many galaxies appears to be dominated by
synchrotron emission excited by supernova explosions. Simple models suggest
that the luminosity is directly proportional to the rate of supernova
explosions of massive stars averaged over the past 30 Myr. The proportionality
may be used together with models of the evolving 1.4 GHz luminosity function to
estimate the global star formation rate density in the era z < 1. The local
value is estimated to be 0.026 solar masses per year per cubic megaparsec, some
50% larger than the value inferred from the Halpha luminosity density. The
value at z ~ 1 is found to be 0.30 solar masses per year per cubic megaparsec.
The 10-fold increase in star formation rate density is consistent with the
increase inferred from mm-wave, far-infrared, ultra-violet and Halpha
observations.Comment: 10 pages, 2 figures, Astrophysical Journal Letters (in press); new PS
version has improved figure placemen
The DSS-14 C-band exciter
The development and implementation of a C-band exciter for use with the Block IV Receiver-Exciter Subsystem at Deep Space Station 14 (DSS-14) has been completed. The exciter supplements the standard capabilities of the Block IV system by providing a drive signal for the C-band transmitter while generating coherent translation frequencies for C-band (5-GHz) to S-band (2.2- to 2.3-GHz) Doppler extraction, C-band to L-band (1.6-GHz) zero delay measurements, and a level calibrated L-band test signal. Exciter functions are described, and a general explanation and description of the C-band uplink controller is presented
Input-output relations for a 3-port grating coupled Fabry-Perot cavity
We analyze an optical 3-port reflection grating by means of a scattering
matrix formalism. Amplitude and phase relations between the 3 ports, i.e. the 3
orders of diffraction are derived. Such a grating can be used as an
all-reflective, low-loss coupler to Fabry-Perot cavities. We derive the input
output relations of a 3-port grating coupled cavity and find distinct
properties not present in 2-port coupled cavities. The cavity relations further
reveal that the 3-port coupler can be designed such that the additional cavity
port interferes destructively. In this case the all-reflective, low-loss,
single-ended Fabry-Perot cavity becomes equivalent to a standard transmissive,
2-port coupled cavity
The star-formation history of the universe - an infrared perspective
A simple and versatile parameterized approach to the star formation history
allows a quantitative investigation of the constraints from far infrared and
submillimetre counts and background intensity measurements.
The models include four spectral components: infrared cirrus (emission from
interstellar dust), an M82-like starburst, an Arp220-like starburst and an AGN
dust torus. The 60 m luminosity function is determined for each chosen
rate of evolution using the PSCz redshift data for 15000 galaxies. The
proportions of each spectral type as a function of 60 m luminosity are
chosen for consistency with IRAS and SCUBA colour-luminosity relations, and
with the fraction of AGN as a function of luminosity found in 12 m
samples. The luminosity function for each component at any wavelength can then
be calculated from the assumed spectral energy distributions. With assumptions
about the optical seds corresponding to each component and, for the AGN
component, the optical and near infrared counts can be accurately modelled.
A good fit to the observed counts at 0.44, 2.2, 15, 60, 90, 175 and 850
m can be found with pure luminosity evolution in all 3 cosmological models
investigated: = 1, = 0.3 ( = 0), and
= 0.3, = 0.7.
All 3 models also give an acceptable fit to the integrated background
spectrum. Selected predictions of the models, for example redshift
distributions for each component at selected wavelengths and fluxes, are shown.
The total mass-density of stars generated is consistent with that observed,
in all 3 cosmological models.Comment: 20 pages, 25 figures. Accepted for publication in ApJ. Full details
of models can be found at http://astro.ic.ac.uk/~mrr/countmodel
The Redshift of GRB 970508
GRB 970508 is the second gamma-ray burst (GRB) for which an optical afterglow
has been detected. It is the first GRB for which a distance scale has been
determined: absorption and emission features in spectra of the optical
afterglow place GRB 970508 at a redshift of z >= 0.835 (Metzger et al. 1997a,
1997b). The lack of a Lyman-alpha forest in these spectra further constrains
this redshift to be less than approximately 2.3. I show that the spectrum of
the optical afterglow of GRB 970508, once corrected for Galactic absorption, is
inconsistent with the relativistic blast-wave model unless a second, redshifted
source of extinction is introduced. This second source of extinction may be the
yet unobserved host galaxy. I determine its redshift to be z =
1.09^{+0.14}_{-0.41}, which is consistent with the observed redshift of z =
0.835. Redshifts greater than z = 1.40 are ruled out at the 3 sigma confidence
level.Comment: Accepted to The Astrophysical Journal (Letters), 10 pages, LaTe
Thermal Emission from HII Galaxies: Discovering the Youngest Systems
We studied the radio properties of very young massive regions of star
formation in HII galaxies, with the aim of detecting episodes of recent star
formation in an early phase of evolution where the first supernovae start to
appear. Our sample consists of 31 HII galaxies, characterized by strong
Hydrogen emission lines, for which low resolution VLA 3.5cm and 6cm
observations were obtained. The radio spectral energy distribution has a range
of behaviours; 1) there are galaxies where the SED is characterized by a
synchrotron-type slope, 2) galaxies with a thermal slope, and, 3) galaxies with
possible free-free absorption at long wavelengths. The latter SEDs were found
in a few galaxies and represent a signature of heavily embedded massive star
clusters closely related to the early stages of massive star formation. Based
on the comparison of the star formation rates determined from the recombination
lines and those determined from the radio emission we find that SFR(Ha) is on
average five times higher than SFR(1.4GHz). We confirm this tendency by
comparing the ratio between the observed flux at 20 cm and the expected one,
calculated based on the Ha star formation rates, both for the galaxies in our
sample and for normal ones. This analysis shows that this ratio is a factor of
2 smaller in our galaxies than in normal ones, indicating that they fall below
the FIR/radio correlation. These results suggest that the emission of these
galaxies is dominated by a recent and massive star formation event in which the
first supernovae (SN) just started to explode. We conclude that the systematic
lack of synchrotron emission in those systems with the largest equivalent width
of Hb can only be explained if those are young starbursts of less than 3.5Myr
of age.Comment: Accepted for publication in Ap
- …
