211 research outputs found

    Using Cold Atoms to Measure Neutrino Mass

    Full text link
    We propose a beta decay experiment based on a sample of ultracold atomic tritium. These initial conditions enable detection of the helium ion in coincidence with the beta. We construct a two-dimensional fit incorporating both the shape of the beta-spectrum and the direct reconstruction of the neutrino mass peak. We present simulation results of the feasible limits on the neutrino mass achievable in this new type of tritium beta-decay experiment.Comment: 10 pages, 5 figure

    Quantum probability distribution of arrival times and probability current density

    Get PDF
    This paper compares the proposal made in previous papers for a quantum probability distribution of the time of arrival at a certain point with the corresponding proposal based on the probability current density. Quantitative differences between the two formulations are examined analytically and numerically with the aim of establishing conditions under which the proposals might be tested by experiment. It is found that quantum regime conditions produce the biggest differences between the formulations which are otherwise near indistinguishable. These results indicate that in order to discriminate conclusively among the different alternatives, the corresponding experimental test should be performed in the quantum regime and with sufficiently high resolution so as to resolve small quantum efects.Comment: 21 pages, 7 figures, LaTeX; Revised version to appear in Phys. Rev. A (many small changes

    On the Specific Features of Temperature Evolution in Ultracold Plasmas

    Full text link
    A theoretical interpretation of the recent experimental studies of temperature evolution in the course of time in the freely-expanding ultracold plasma bunches, released from a magneto-optical trap, is discussed. The most interesting result is finding the asymptotics of the form T_e ~ t^{-(1.2 +/- 0.1)} instead of t^{-2}, which was expected for the rarefied monatomic gas during inertial expansion. As follows from our consideration, the substantially decelerated decay of the temperature can be well explained by the specific features of the equation of state for the ultracold plasmas with strong Coulomb's coupling, whereas a heat release due to inelastic processes (in particular, three-body recombination) does not play an appreciable role in the first approximation. This conclusion is confirmed both by approximate analytical estimates, based on the model of "virialization" of the charged-particle energies, and by the results of "ab initio" numerical simulation. Moreover, the simulation shows that the above-mentioned law of temperature evolution is approached very quickly--when the virial criterion is satisfied only within a factor on the order of unity.Comment: LaTeX + 3 eps figures, 16 pages. Plasma Physics Reports, v.37, in press (2011

    On the formation and decay of a molecular ultracold plasma

    Full text link
    Double-resonant photoexcitation of nitric oxide in a molecular beam creates a dense ensemble of 50f(2)50f(2) Rydberg states, which evolves to form a plasma of free electrons trapped in the potential well of an NO+^+ spacecharge. The plasma travels at the velocity of the molecular beam, and, on passing through a grounded grid, yields an electron time-of-flight signal that gauges the plasma size and quantity of trapped electrons. This plasma expands at a rate that fits with an electron temperature as low as 5 K, colder that typically observed for atomic ultracold plasmas. The recombination of molecular NO+^+ cations with electrons forms neutral molecules excited by more than twice the energy of the NO chemical bond, and the question arises whether neutral fragmentation plays a role in shaping the redistribution of energy and particle density that directs the short-time evolution from Rydberg gas to plasma. To explore this question, we adapt a coupled rate-equations model established for atomic ultracold plasmas to describe the energy-grained avalanche of electron-Rydberg and electron-ion collisions in our system. Adding channels of Rydberg predissociation and two-body, electron- cation dissociative recombination to the atomic formalism, we investigate the kinetics by which this relaxation distributes particle density and energy over Rydberg states, free electrons and neutral fragments. The results of this investigation suggest some mechanisms by which molecular fragmentation channels can affect the state of the plasma

    Search For Trapped Antihydrogen

    Get PDF
    We present the results of an experiment to search for trapped antihydrogen atoms with the ALPHA antihydrogen trap at the CERN Antiproton Decelerator. Sensitive diagnostics of the temperatures, sizes, and densities of the trapped antiproton and positron plasmas have been developed, which in turn permitted development of techniques to precisely and reproducibly control the initial experimental parameters. The use of a position-sensitive annihilation vertex detector, together with the capability of controllably quenching the superconducting magnetic minimum trap, enabled us to carry out a high-sensitivity and low-background search for trapped synthesised antihydrogen atoms. We aim to identify the annihilations of antihydrogen atoms held for at least 130 ms in the trap before being released over ~30 ms. After a three-week experimental run in 2009 involving mixing of 10^7 antiprotons with 1.3 10^9 positrons to produce 6 10^5 antihydrogen atoms, we have identified six antiproton annihilation events that are consistent with the release of trapped antihydrogen. The cosmic ray background, estimated to contribute 0.14 counts, is incompatible with this observation at a significance of 5.6 sigma. Extensive simulations predict that an alternative source of annihilations, the escape of mirror-trapped antiprotons, is highly unlikely, though this possibility has not yet been ruled out experimentally.Comment: 12 pages, 7 figure
    corecore