29 research outputs found

    The cystic fibrosis transmembrane recruiter the alter ego of CFTR as a multi-kinase anchor

    Get PDF
    This review focuses on a newly discovered interaction between protein kinases involved in cellular energetics, a process that may be disturbed in cystic fibrosis for unknown reasons. I propose a new model where kinase-mediated cellular transmission of energy provides mechanistic insight to a latent role of the cystic fibrosis transmembrane conductance regulator (CFTR). I suggest that CFTR acts as a multi-kinase recruiter to the apical epithelial membrane. My group finds that, in the cytosol, two protein kinases involved in cell energy homeostasis, nucleoside diphosphate kinase (NDPK) and AMP-activated kinase (AMPK), bind one another. Preliminary data suggest that both can also bind CFTR (function unclear). The disrupted role of this CFTR-kinase complex as ‘membrane transmitter to the cell’ is proposed as an alternative paradigm to the conventional ion transport mediated and CFTR/chloride-centric view of cystic fibrosis pathogenesis. Chloride remains important, but instead, chloride-induced control of the phosphohistidine content of one kinase component (NDPK, via a multi-kinase complex that also includes a third kinase, CK2; formerly casein kinase 2). I suggest that this complex provides the necessary near-equilibrium conditions needed for efficient transmission of phosphate energy to proteins controlling cellular energetics. Crucially, a new role for CFTR as a kinase controller is proposed with ionic concentration acting as a signal. The model posits a regulatory control relay for energy sensing involving a cascade of protein kinases bound to CFTR

    Diaphragmatic hernia and eventration

    No full text

    Expression pattern of Drosophila translin and behavioral analyses of the mutant.

    No full text
    Translin is an evolutionarily conserved approximately 27-kDa protein that binds to specific DNA and RNA sequences and has diverse cellular functions. Here, we report the cloning and characterization of the translin orthologue from the fruit fly Drosophila melanogaster. Under protein-denaturing conditions, purified Drosophila translin exists as a mixture of dimers and monomers just like human translin. In contrast to human translin, the Drosophila translin dimers do not appear to be stabilized by disulfide interactions. Drosophila translin shows a ubiquitous cytoplasmic localization in early embryonal syncytial stage, with an enhanced staining in ventral neuroblasts at later stages (8-9), which are probably at metaphase. An elevated expression was seen in several other cell types, such as cells around the tracheal pits in the embryo and oenocytes in the third instar larva. RNA in situ hybridization showed an increased expression in the ventral midline cells of the larval brain, suggesting a neuronal expression, which was corroborated by protein immunostaining. In adult flies, Drosophila translin is localized in the brain neuronal cell bodies and in early spermatocytes. Interestingly, Drosophila translin mutants exhibit an impaired motor response which is sex specific. Taken together, the multiple cellular localizations, the high neuronal expression and the attendant locomotor defect of the Drosophila translin mutant suggest that Drosophila translin may have roles in neuronal development and behavior analogous to that of mouse translin.We gratefully acknowledge the financial support from Tata Institute of Fundamental Research. A DBT Postdoctoral Fellowship (K. Suseendranathan) is gratefully acknowledged
    corecore