6 research outputs found

    The quiet crossing of ocean tipping points

    Get PDF
    Anthropogenic climate change profoundly alters the ocean’s environmental conditions, which, in turn, impact marine ecosystems. Some of these changes are happening fast and may be difficult to reverse. The identification and monitoring of such changes, which also includes tipping points, is an ongoing and emerging research effort. Prevention of negative impacts requires mitigation efforts based on feasible research-based pathways. Climate-induced tipping points are traditionally associated with singular catastrophic events (relative to natural variations) of dramatic negative impact. High-probability high-impact ocean tipping points due to warming, ocean acidification, and deoxygenation may be more fragmented both regionally and in time but add up to global dimensions. These tipping points in combination with gradual changes need to be addressed as seriously as singular catastrophic events in order to prevent the cumulative and often compounding negative societal and Earth system impacts

    White Paper: Addressing the challenges of global warming for polar freshwater resources

    Get PDF
    The polar regions are undergoing rapid transformations due to global warming, resulting in temperature increases far surpassing the global average and significantly impacting ecosystems, especially freshwater systems. Understanding the implications of climate change on Arctic and Antarctic freshwater systems is crucial, as vital ecosystem services essential for sustaining human and environmental well-being may be disrupted. Shifts in freshwater availability due to changes in precipitation patterns, ice melt, and permafrost thaw pose significant challenges for local communities, exacerbating their vulnerabilities. Additionally, climate warming can affect water quality, e. g. by releasing pollutants and potential hazardous microorganisms, further jeopardizing human and natural ecosystem health. Arctic communities face multiple challenges in adapting to these changes, including limited resources and infrastructure that may not be resilient to environmental change. Urgent action is needed to mitigate these impacts and safeguard freshwater resources through evidence-based approaches, scientific research, policy involvement, and community engagement to ensure a sustainable future in the polar regions. In the pursuit of understanding freshwater dynamics in the Arctic and Antarctic, international collaboration across disciplines stands as a cornerstone, essential for addressing the impacts of climate change on polar freshwater resources. Initiatives aiming to understand the dynamics of transboundary water resources underscore the pivotal role of collaboration across institutions and nations, allowing for collective efforts in providing effective solutions to advance the current knowledge of polar ecosystems. Such collaboration not only benefits the polar regions but also carries implications for the global community, aligning with the UN’s SDGs. Therefore, funding mechanisms to bridge the knowledge-to-action gap and support international cooperation should be set high in the research agenda. The scientific and funding roadmap presented here should be implemented urgently, to maximise, in a 10-year term, the benefits to be gained through synergies with the next International Polar Year (2032-33). It will leverage existing transnational initiatives and frameworks, including the Antarctic governance framework, to guide future research initiatives towards sustainable management of freshwater resources. Overall, a comprehensive approach integrating pole-to-pole collaboration, strategic funding, and adherence to governance frameworks is paramount, ensuring collective efforts contribute to the well-being of polar communities and the broader global understanding of climate change implications
    corecore