1,094 research outputs found

    A Time-Varying Non-Parametric Methodology for Assessing Changes in QT Variability Unrelated to Heart Rate Variability

    Get PDF
    OBJECTIVE: To propose and test a novel methodology to measure changes in QT interval variability (QTV) unrelated to RR interval variability (RRV) in non-stationary conditions. METHODS: Time-frequency coherent and residual spectra representing QTV related (QTVrRRV) and unrelated (QTVuRRV) to RRV, respectively, are estimated using time-frequency Cohen's class distributions. The proposed approach decomposes the non-stationary output spectrum of any two-input one-output model with uncorrelated inputs into two spectra representing the information related and unrelated to one of the two inputs, respectively. An algorithm to correct for the bias of the time-frequency coherence function between QTV and RRV is proposed to provide accurate estimates of both QTVuRRV and QTVrRRV. Two simulation studies were conducted to assess the methodology in challenging non-stationary conditions and data recorded during head-up tilt in 16 healthy volunteers were analyzed. RESULTS: In the simulation studies, QTVuRRV changes were tracked with only a minor delay due to the filtering necessary to estimate the non-stationary spectra. The correlation coefficient between theoretical and estimated patterns was >0.92 even for extremely noisy recordings (SNR in QTV =-10dB). During head-up tilt, QTVrRRV explained the largest proportion of QTV, whereas QTVuRRV showed higher relative increase than QTV or QTVrRRV in all spectral bands (P<0.05 for most pairwise comparisons). CONCLUSION: The proposed approach accurately tracks changes in QTVuRRV. Head-up tilt induced a slightly greater increase in QTVuRRV than in QTVrRRV. SIGNIFICANCE: The proposed index QTVuRRV may represent an indirect measure of intrinsic ventricular repolarization variability, a marker of cardiac instability associated with sympathetic ventricular modulation and sudden cardiac death

    Influence of heart rate in non-linear HRV indices as a sampling rate effect evaluated on supine and standing

    Get PDF
    The purpose of this study is to characterize and attenuate the influence of mean heart rate (HR) on nonlinear heart rate variability (HRV) indices (correlation dimension, sample, and approximate entropy) as a consequence of being the HR the intrinsic sampling rate of HRV signal. This influence can notably alter nonlinear HRV indices and lead to biased information regarding autonomic nervous system (ANS) modulation. First, a simulation study was carried out to characterize the dependence of nonlinear HRV indices on HR assuming similar ANS modulation. Second, two HR-correction approaches were proposed: one based on regression formulas and another one based on interpolating RR time series. Finally, standard and HR-corrected HRV indices were studied in a body position change database. The simulation study showed the HR-dependence of non-linear indices as a sampling rate effect, as well as the ability of the proposed HR-corrections to attenuate mean HR influence. Analysis in a body position changes database shows that correlation dimension was reduced around 21% in median values in standing with respect to supine position (p < 0.05), concomitant with a 28% increase in mean HR (p < 0.05). After HR-correction, correlation dimension decreased around 18% in standing with respect to supine position, being the decrease still significant. Sample and approximate entropy showed similar trends. HR-corrected nonlinear HRV indices could represent an improvement in their applicability as markers of ANS modulation when mean HR changes

    Bifurcations and Slow-Fast Analysis in a Cardiac Cell Model for Investigation of Early Afterdepolarizations

    Get PDF
    In this study, we teased out the dynamical mechanisms underlying the generation of arrhythmogenic early afterdepolarizations (EADs) in a three-variable model of a mammalian ventricular cell. Based on recently published studies, we consider a 1-fast, 2-slow variable decomposition of the system describing the cellular action potential. We use sweeping techniques, such as the spike-counting method, and bifurcation and continuation methods to identify parametric regions with EADs. We show the existence of isolas of periodic orbits organizing the different EAD patterns and we provide a preliminary classification of our fast-slow decomposition according to the involved dynamical phenomena. This investigation represents a basis for further studies into the organization of EAD patterns in the parameter space and the involved bifurcations

    El examen serológico con muestras de sangre obtenidas en papel de filtro

    Get PDF
    Se ha puesto a punto una técnica de obtención de sangre total en papel filtro para el muestreo serológico de enfermedades de los conejos tales como: Enfermedad Hemorrágica Viral (RHVD); Encephalitozoonosis; Chlamydia psittaci y Mixomatosis. Se propone como alternativa de muestreo para la determinación de anticuerpos, por ser un método sencillo que no requiere muchos cuidados en el envío al laboratorio. Se evaluaron 94 muestras de suero de conejos llegados al laboratorio para el diagnóstico de las entidades antes citadas. Los resultados serológicos de la muestras de sangre total obtenida por venipuntura y en papel filtro, fueron comparados. Los métodos empleados incluyeron: Inmunofluorescencia Indirecta (IFI) para detectar IgG, Carbón inmunoensayo (CIA) e Inhibición de la Hemoaglutinación (IHA) para la evaluación de anticuerpos totales. Los resultados de sensibilidad, especificidad, índice de concordancia y valores predictivos positivos y negativos obtenidos en este trabajo fueron satisfactorios y nos permitieron decir que la toma y el transporte de muestras de sangre en papel de filtro es una técnica útil con sensibilidad y especificidad adecuada para realizar estudios seroepidemiológicos en conejos

    Dynamical mechanism for generation of arrhythmogenic early afterdepolarizations in cardiac myocytes: insights from in silico electrophysiological models

    Get PDF
    We analyze the dynamical mechanisms underlying the formation of arrhythmogenic early afterdepolarizations (EADs) in two mathematical models of cardiac cellular electrophysiology: the Sato et al. biophysically detailed model of a rabbit ventricular myocyte of dimension 27 and a reduced version of the Luo-Rudy mammalian myocyte model of dimension 3. Based on a comparison of the two models, with detailed bifurcation analysis using spike-counting techniques and continuation methods in the simple model and numerical explorations in the complex model, we locate the point where the first EAD originates in an unstable branch of periodic orbits. These results serve as a basis to propose a conjectured scheme involving a hysteresis mechanism with the creation of alternans and EADs in the unstable branch. This theoretical scheme fits well with electrophysiological experimental data on EAD generation and hysteresis phenomena. Our findings open the door to the development of novel methods for pro-arrhythmia risk prediction related to EAD generation without actual induction of EADs

    Reconnaissance of the HR 8799 Exosolar System. II. Astrometry and Orbital Motion

    Get PDF
    We present an analysis of the orbital motion of the four substellar objects orbiting HR 8799. Our study relies on the published astrometric history of this system augmented with an epoch obtained with the Project 1640 coronagraph with an integral field spectrograph (IFS) installed at the Palomar Hale telescope. We first focus on the intricacies associated with astrometric estimation using the combination of an extreme adaptive optics system (PALM-3000), a coronagraph, and an IFS. We introduce two new algorithms. The first one retrieves the stellar focal plane position when the star is occulted by a coronagraphic stop. The second one yields precise astrometric and spectrophotometric estimates of faint point sources even when they are initially buried in the speckle noise. The second part of our paper is devoted to studying orbital motion in this system. In order to complement the orbital architectures discussed in the literature, we determine an ensemble of likely Keplerian orbits for HR 8799bcde, using a Bayesian analysis with maximally vague priors regarding the overall configuration of the system. Although the astrometric history is currently too scarce to formally rule out coplanarity, HR 8799d appears to be misaligned with respect to the most likely planes of HR 8799bce orbits. This misalignment is sufficient to question the strictly coplanar assumption made by various authors when identifying a Laplace resonance as a potential architecture. Finally, we establish a high likelihood that HR 8799de have dynamical masses below 13 M_(Jup), using a loose dynamical survival argument based on geometric close encounters. We illustrate how future dynamical analyses will further constrain dynamical masses in the entire system

    Improving signal stability in a multi-electrode array (MEA) system for cardiac biopsies

    Get PDF
    This work evaluates the performance of a microelectrode array (MEA) to be used in a specific platform dedicated for measuring field potentials of small human cardiac samples. A test bench has been developed to characterize the electrodes by measuring their impedance as well as to modify their characteristic curve using a replatinization process, where black platinum is deposited on the indicated areas of the MEA flex-pcb. This set-up consists of the array of microelectrodes made of gold, together with its corresponding electronic adapter board, a potentiostat and an electrochemical interface. Phosphate buffered saline (PBS), which is commonly considered for this type of analysis, has been used for impedance characterization. Initially, the impedance presents a highly variable behavior at different frequencies as well as between the different channels of the array. Once the platinization process has been carried out, the impedance in all the recording channels is very similar and has decreased over a large part of the frequency range under study. A complete electrical model of the electrodes has been proposed and analyzed, achieving better results by including the mathematical constant phase element (CPE) associated with capacitive behavior (model fitting error < 2%). Finally, the characterization of the different noise contributions has been carried out. Based on the obtained results, it can be concluded that the evaluated system allows the recording of field potential signals from small human cardiac tissues

    Li-doped ZnO nanorods with single-crystal quality - non-classical crystallization and self-assembly into mesoporous materials

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The benefits and promise of nanoscale dimensions for the properties of (ceramic) semiconductors are widely known. 1-D nanostructures in particular have proven to be of extraordinary relevance due to their applicability in future electronic and optoelectronic devices. Key to successful technological implementation of semiconductor nanostructures is the control of their electronic properties via doping. Despite its tremendous importance, precise chemical doping of defined nano-objects has been addressed rarely so far. Frequent problems are the creation of secondary defects and related undesired property changes by incorporation of hetero-elements, and the difficulty in ensuring a uniform and precise positioning of the dopant in the nanocrystal lattice. Here, we present the synthesis of Li-doped zinc oxide nanorods, which possess excellent (single-crystal) quality. The method is based on a novel non-classical crystallization mechanism, comprising an unusually oriented disassembly step. Afterwards, the nanorods are incorporated into mesoporous layers using colloidal self-assembly. Proof-of-principle gas sensing measurements with these novel materials demonstrate the beneficial role of Li-doping, indicating not only better conductivity but also the occurrence of catalytic effects
    corecore